/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2014 CERN * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include #include #include #include #include "trace.h" #include "pns_item.h" #include "pns_line.h" #include "pns_node.h" #include "pns_via.h" #include "pns_solid.h" #include "pns_joint.h" #include "pns_index.h" #include "pns_router.h" using boost::unordered_set; using boost::unordered_map; #ifdef DEBUG static boost::unordered_set allocNodes; #endif PNS_NODE::PNS_NODE() { TRACE( 0, "PNS_NODE::create %p", this ); m_depth = 0; m_root = this; m_parent = NULL; m_maxClearance = 800000; // fixme: depends on how thick traces are. m_index = new PNS_INDEX; #ifdef DEBUG allocNodes.insert( this ); #endif } PNS_NODE::~PNS_NODE() { TRACE( 0, "PNS_NODE::delete %p", this ); if( !m_children.empty() ) { TRACEn( 0, "attempting to free a node that has kids.\n" ); assert( false ); } #ifdef DEBUG if( allocNodes.find( this ) == allocNodes.end() ) { TRACEn( 0, "attempting to free an already-free'd node.\n" ); assert( false ); } allocNodes.erase( this ); #endif for( PNS_INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i ) { if( (*i)->BelongsTo( this ) ) delete *i; } unlinkParent(); delete m_index; } int PNS_NODE::GetClearance( const PNS_ITEM* aA, const PNS_ITEM* aB ) const { return (*m_clearanceFunctor)( aA, aB ); } PNS_NODE* PNS_NODE::Branch() { PNS_NODE* child = new PNS_NODE; TRACE( 0, "PNS_NODE::branch %p (parent %p)", child % this ); m_children.push_back( child ); child->m_depth = m_depth + 1; child->m_parent = this; child->m_clearanceFunctor = m_clearanceFunctor; child->m_root = isRoot() ? this : m_root; // immmediate offspring of the root branch needs not copy anything. // For the rest, deep-copy joints, overridden item map and pointers // to stored items. if( !isRoot() ) { JOINT_MAP::iterator j; for( PNS_INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i ) child->m_index->Add( *i ); child->m_joints = m_joints; child->m_override = m_override; } TRACE( 2, "%d items, %d joints, %d overrides", child->m_index->Size() % child->m_joints.size() % child->m_override.size() ); return child; } void PNS_NODE::unlinkParent() { if( isRoot() ) return; for( std::vector::iterator i = m_parent->m_children.begin(); i != m_parent->m_children.end(); ++i ) { if( *i == this ) { m_parent->m_children.erase( i ); return; } } } // function object that visits potential obstacles and performs // the actual collision refining struct PNS_NODE::OBSTACLE_VISITOR { ///> node we are searching in (either root or a branch) PNS_NODE* m_node; ///> node that overrides root entries PNS_NODE* m_override; ///> list of encountered obstacles OBSTACLES& m_tab; ///> the item we are looking for collisions with const PNS_ITEM* m_item; ///> acccepted kinds of colliding items (solids, vias, segments, etc...) int m_kindMask; ///> max number of hits int m_limitCount; ///> number of items found so far int m_matchCount; ///> additional clearance int m_extraClearance; OBSTACLE_VISITOR( PNS_NODE::OBSTACLES& aTab, const PNS_ITEM* aItem, int aKindMask ) : m_tab( aTab ), m_item( aItem ), m_kindMask( aKindMask ), m_limitCount( -1 ), m_matchCount( 0 ), m_extraClearance( 0 ) { if( aItem->Kind() == PNS_ITEM::LINE ) m_extraClearance += static_cast( aItem )->Width() / 2; } void SetCountLimit( int aLimit ) { m_limitCount = aLimit; } void SetWorld( PNS_NODE* aNode, PNS_NODE* aOverride = NULL ) { m_node = aNode; m_override = aOverride; } bool operator()( PNS_ITEM* aItem ) { if( !aItem->OfKind( m_kindMask ) ) return true; // check if there is a more recent branch with a newer // (possibily modified) version of this item. if( m_override && m_override->overrides( aItem ) ) return true; int clearance = m_extraClearance + m_node->GetClearance( aItem, m_item ); if( aItem->Kind() == PNS_ITEM::LINE ) clearance += static_cast(aItem)->Width() / 2; if( !aItem->Collide( m_item, clearance ) ) return true; PNS_OBSTACLE obs; obs.m_item = aItem; m_tab.push_back( obs ); m_matchCount++; if( m_limitCount > 0 && m_matchCount >= m_limitCount ) return false; return true; }; }; int PNS_NODE::QueryColliding( const PNS_ITEM* aItem, PNS_NODE::OBSTACLES& aObstacles, int aKindMask, int aLimitCount ) { OBSTACLE_VISITOR visitor( aObstacles, aItem, aKindMask ); #ifdef DEBUG assert( allocNodes.find( this ) != allocNodes.end() ); #endif visitor.SetCountLimit( aLimitCount ); visitor.SetWorld( this, NULL ); // first, look for colliding items in the local index m_index->Query( aItem, m_maxClearance, visitor ); // if we haven't found enough items, look in the root branch as well. if( !isRoot() && ( visitor.m_matchCount < aLimitCount || aLimitCount < 0 ) ) { visitor.SetWorld( m_root, this ); m_root->m_index->Query( aItem, m_maxClearance, visitor ); } return aObstacles.size(); } PNS_NODE::OPT_OBSTACLE PNS_NODE::NearestObstacle( const PNS_LINE* aItem, int aKindMask ) { OBSTACLES obs_list; bool found_isects = false; const SHAPE_LINE_CHAIN& line = aItem->CLine(); obs_list.reserve( 100 ); int n = 0; for( int i = 0; i < line.SegmentCount(); i++ ) { const PNS_SEGMENT s( *aItem, line.CSegment( i ) ); n += QueryColliding( &s, obs_list, aKindMask ); } if( aItem->EndsWithVia() ) n += QueryColliding( &aItem->Via(), obs_list, aKindMask ); // if(! QueryColliding ( aItem, obs_list, aKindMask )) if( !n ) return OPT_OBSTACLE(); PNS_LINE& aLine = (PNS_LINE&) *aItem; PNS_OBSTACLE nearest; nearest.m_item = NULL; nearest.m_distFirst = INT_MAX; BOOST_FOREACH( PNS_OBSTACLE obs, obs_list ) { VECTOR2I ip_first, ip_last; int dist_max = INT_MIN; std::vector isect_list; int clearance = GetClearance( obs.m_item, &aLine ); SHAPE_LINE_CHAIN hull = obs.m_item->Hull( clearance, aItem->Width() ); if( aLine.EndsWithVia() ) { int clearance = GetClearance( obs.m_item, &aLine.Via() ); SHAPE_LINE_CHAIN viaHull = aLine.Via().Hull( clearance, aItem->Width() ); viaHull.Intersect( hull, isect_list ); BOOST_FOREACH( SHAPE_LINE_CHAIN::INTERSECTION isect, isect_list ) { int dist = aLine.CLine().Length() + ( isect.p - aLine.Via().Pos() ).EuclideanNorm(); if( dist < nearest.m_distFirst ) { found_isects = true; nearest.m_distFirst = dist; nearest.m_ipFirst = isect.p; nearest.m_item = obs.m_item; nearest.m_hull = hull; } if( dist > dist_max ) { dist_max = dist; ip_last = isect.p; } } } isect_list.clear(); hull.Intersect( aLine.CLine(), isect_list ); BOOST_FOREACH( SHAPE_LINE_CHAIN::INTERSECTION isect, isect_list ) { int dist = aLine.CLine().PathLength( isect.p ); if( dist < nearest.m_distFirst ) { found_isects = true; nearest.m_distFirst = dist; nearest.m_ipFirst = isect.p; nearest.m_item = obs.m_item; nearest.m_hull = hull; } if( dist > dist_max ) { dist_max = dist; ip_last = isect.p; } } nearest.m_ipLast = ip_last; nearest.m_distLast = dist_max; } if( !found_isects ) nearest.m_item = obs_list[0].m_item; return nearest; } PNS_NODE::OPT_OBSTACLE PNS_NODE::CheckColliding( const PNS_ITEMSET& aSet, int aKindMask ) { BOOST_FOREACH( const PNS_ITEM* item, aSet.CItems() ) { OPT_OBSTACLE obs = CheckColliding( item, aKindMask ); if( obs ) return obs; } return OPT_OBSTACLE(); } PNS_NODE::OPT_OBSTACLE PNS_NODE::CheckColliding( const PNS_ITEM* aItemA, int aKindMask ) { OBSTACLES obs; obs.reserve( 100 ); if( aItemA->Kind() == PNS_ITEM::LINE ) { int n = 0; const PNS_LINE* line = static_cast( aItemA ); const SHAPE_LINE_CHAIN& l = line->CLine(); for( int i = 0; i < l.SegmentCount(); i++ ) { const PNS_SEGMENT s( *line, l.CSegment( i ) ); n += QueryColliding( &s, obs, aKindMask, 1 ); if( n ) return OPT_OBSTACLE( obs[0] ); } if( line->EndsWithVia() ) { n += QueryColliding( &line->Via(), obs, aKindMask, 1 ); if( n ) return OPT_OBSTACLE( obs[0] ); } } else if( QueryColliding( aItemA, obs, aKindMask, 1 ) > 0 ) return OPT_OBSTACLE( obs[0] ); return OPT_OBSTACLE(); } bool PNS_NODE::CheckColliding( const PNS_ITEM* aItemA, const PNS_ITEM* aItemB, int aKindMask ) { assert( aItemB ); int clearance = GetClearance( aItemA, aItemB ); // fixme: refactor if( aItemA->Kind() == PNS_ITEM::LINE ) clearance += static_cast( aItemA )->Width() / 2; if( aItemB->Kind() == PNS_ITEM::LINE ) clearance += static_cast( aItemB )->Width() / 2; return aItemA->Collide( aItemB, clearance ); } struct HIT_VISITOR { PNS_ITEMSET& m_items; const VECTOR2I& m_point; const PNS_NODE* m_world; HIT_VISITOR( PNS_ITEMSET& aTab, const VECTOR2I& aPoint, const PNS_NODE* aWorld ) : m_items( aTab ), m_point( aPoint ), m_world( aWorld ) {} bool operator()( PNS_ITEM* aItem ) { SHAPE_CIRCLE cp( m_point, 0 ); int cl = 0; if( aItem->Shape()->Collide( &cp, cl ) ) m_items.Add( aItem ); return true; } }; const PNS_ITEMSET PNS_NODE::HitTest( const VECTOR2I& aPoint ) const { PNS_ITEMSET items; // fixme: we treat a point as an infinitely small circle - this is inefficient. SHAPE_CIRCLE s( aPoint, 0 ); HIT_VISITOR visitor( items, aPoint, this ); m_index->Query( &s, m_maxClearance, visitor ); if( !isRoot() ) // fixme: could be made cleaner { PNS_ITEMSET items_root; HIT_VISITOR visitor_root( items_root, aPoint, m_root ); m_root->m_index->Query( &s, m_maxClearance, visitor_root ); BOOST_FOREACH( PNS_ITEM* item, items_root.Items() ) { if( !overrides( item ) ) items.Add( item ); } } return items; } void PNS_NODE::addSolid( PNS_SOLID* aSolid ) { linkJoint( aSolid->Pos(), aSolid->Layers(), aSolid->Net(), aSolid ); m_index->Add( aSolid ); } void PNS_NODE::addVia( PNS_VIA* aVia ) { linkJoint( aVia->Pos(), aVia->Layers(), aVia->Net(), aVia ); m_index->Add( aVia ); } void PNS_NODE::addLine( PNS_LINE* aLine, bool aAllowRedundant ) { SHAPE_LINE_CHAIN& l = aLine->Line(); for( int i = 0; i < l.SegmentCount(); i++ ) { SEG s = l.CSegment( i ); if( s.A != s.B ) { PNS_SEGMENT* pseg = new PNS_SEGMENT( *aLine, s ); PNS_SEGMENT* psegR = NULL; if ( !aAllowRedundant ) psegR = findRedundantSegment( pseg ); if( psegR ) aLine->LinkSegment( psegR ); else { pseg->SetOwner( this ); linkJoint( s.A, pseg->Layers(), aLine->Net(), pseg ); linkJoint( s.B, pseg->Layers(), aLine->Net(), pseg ); aLine->LinkSegment( pseg ); m_index->Add( pseg ); } } } } void PNS_NODE::addSegment( PNS_SEGMENT* aSeg, bool aAllowRedundant ) { if( aSeg->Seg().A == aSeg->Seg().B ) { TRACEn( 0, "attempting to add a segment with same end coordinates, ignoring." ) return; } if( !aAllowRedundant && findRedundantSegment ( aSeg ) ) return; aSeg->SetOwner( this ); linkJoint( aSeg->Seg().A, aSeg->Layers(), aSeg->Net(), aSeg ); linkJoint( aSeg->Seg().B, aSeg->Layers(), aSeg->Net(), aSeg ); m_index->Add( aSeg ); } void PNS_NODE::Add( PNS_ITEM* aItem, bool aAllowRedundant ) { aItem->SetOwner( this ); switch( aItem->Kind() ) { case PNS_ITEM::SOLID: addSolid( static_cast( aItem ) ); break; case PNS_ITEM::SEGMENT: addSegment( static_cast( aItem ), aAllowRedundant ); break; case PNS_ITEM::LINE: addLine( static_cast( aItem ), aAllowRedundant ); break; case PNS_ITEM::VIA: addVia( static_cast( aItem ) ); break; default: assert( false ); } } void PNS_NODE::doRemove( PNS_ITEM* aItem ) { // assert(m_root->m_index->Contains(aItem) || m_index->Contains(aItem)); // case 1: removing an item that is stored in the root node from any branch: // mark it as overridden, but do not remove if( aItem->BelongsTo( m_root ) && !isRoot() ) m_override.insert( aItem ); // case 2: the item belongs to this branch or a parent, non-root branch, // or the root itself and we are the root: remove from the index else if( !aItem->BelongsTo( m_root ) || isRoot() ) m_index->Remove( aItem ); // the item belongs to this particular branch: un-reference it if( aItem->BelongsTo( this ) ) aItem->SetOwner( NULL ); } void PNS_NODE::removeSegment( PNS_SEGMENT* aSeg ) { unlinkJoint( aSeg->Seg().A, aSeg->Layers(), aSeg->Net(), aSeg ); unlinkJoint( aSeg->Seg().B, aSeg->Layers(), aSeg->Net(), aSeg ); doRemove( aSeg ); } void PNS_NODE::removeLine( PNS_LINE* aLine ) { std::vector* segRefs = aLine->LinkedSegments(); if(! aLine->SegmentCount() ) return; assert (segRefs != NULL); assert (aLine->Owner()); if ( (int) segRefs->size() != aLine->SegmentCount() ) { //printf("******weird deletion: segrefs %d segcount %d hasloops %d\n", segRefs->size(), aLine->SegmentCount(), aLine->HasLoops()); } BOOST_FOREACH( PNS_SEGMENT* seg, *segRefs ) { removeSegment( seg ); } aLine->SetOwner( NULL ); aLine->ClearSegmentLinks(); } void PNS_NODE::removeVia( PNS_VIA* aVia ) { // We have to split a single joint (associated with a via, binding together multiple layers) // into multiple independent joints. As I'm a lazy bastard, I simply delete the via and all its links and re-insert them. PNS_JOINT::HASH_TAG tag; VECTOR2I p( aVia->Pos() ); PNS_LAYERSET vLayers( aVia->Layers() ); int net = aVia->Net(); PNS_JOINT* jt = FindJoint( p, vLayers.Start(), net ); PNS_JOINT::LINKED_ITEMS links( jt->LinkList() ); tag.net = net; tag.pos = p; bool split; do { split = false; std::pair range = m_joints.equal_range( tag ); if( range.first == m_joints.end() ) break; // find and remove all joints containing the via to be removed for( JOINT_MAP::iterator f = range.first; f != range.second; ++f ) { if( aVia->LayersOverlap ( &f->second ) ) { m_joints.erase( f ); split = true; break; } } } while( split ); // and re-link them, using the former via's link list BOOST_FOREACH(PNS_ITEM* item, links) { if( item != aVia ) linkJoint ( p, item->Layers(), net, item ); } doRemove( aVia ); } void PNS_NODE::Replace( PNS_ITEM* aOldItem, PNS_ITEM* aNewItem ) { Remove( aOldItem ); Add( aNewItem ); } void PNS_NODE::Remove( PNS_ITEM* aItem ) { switch( aItem->Kind() ) { case PNS_ITEM::SOLID: // fixme: this fucks up the joints, but it's only used for marking colliding obstacles for the moment, so we don't care. doRemove ( aItem ); break; case PNS_ITEM::SEGMENT: removeSegment( static_cast( aItem ) ); break; case PNS_ITEM::LINE: removeLine( static_cast( aItem ) ); break; case PNS_ITEM::VIA: removeVia( static_cast( aItem ) ); break; default: break; } } void PNS_NODE::followLine( PNS_SEGMENT* aCurrent, bool aScanDirection, int& aPos, int aLimit, VECTOR2I* aCorners, PNS_SEGMENT** aSegments, bool& aGuardHit ) { bool prevReversed = false; const VECTOR2I guard = aScanDirection ? aCurrent->Seg().B : aCurrent->Seg().A; for( int count = 0 ; ; ++count ) { const VECTOR2I p = ( aScanDirection ^ prevReversed ) ? aCurrent->Seg().B : aCurrent->Seg().A; const PNS_JOINT* jt = FindJoint( p, aCurrent ); assert( jt ); aCorners[aPos] = jt->Pos(); if( count && guard == p ) { aSegments[aPos] = NULL; aGuardHit = true; break; } aSegments[aPos] = aCurrent; aPos += ( aScanDirection ? 1 : -1 ); if( !jt->IsLineCorner() || aPos < 0 || aPos == aLimit ) break; aCurrent = jt->NextSegment( aCurrent ); prevReversed = ( jt->Pos() == (aScanDirection ? aCurrent->Seg().B : aCurrent->Seg().A ) ); } } PNS_LINE* PNS_NODE::AssembleLine( PNS_SEGMENT* aSeg, int* aOriginSegmentIndex) { const int MaxVerts = 1024; VECTOR2I corners[MaxVerts + 1]; PNS_SEGMENT* segs[MaxVerts + 1]; PNS_LINE* pl = new PNS_LINE; bool guardHit = false; int i_start = MaxVerts / 2, i_end = i_start + 1; pl->SetWidth( aSeg->Width() ); pl->SetLayers( aSeg->Layers() ); pl->SetNet( aSeg->Net() ); pl->SetOwner( this ); followLine( aSeg, false, i_start, MaxVerts, corners, segs, guardHit ); if( !guardHit ) followLine( aSeg, true, i_end, MaxVerts, corners, segs, guardHit ); int n = 0; PNS_SEGMENT* prev_seg = NULL; for( int i = i_start + 1; i < i_end; i++ ) { const VECTOR2I& p = corners[i]; pl->Line().Append( p ); if( segs[i] && prev_seg != segs[i] ) { pl->LinkSegment( segs[i] ); if( segs[i] == aSeg && aOriginSegmentIndex ) *aOriginSegmentIndex = n; n++; } prev_seg = segs[i]; } assert( pl->SegmentCount() != 0 ); assert( pl->SegmentCount() == (int) pl->LinkedSegments()->size() ); return pl; } void PNS_NODE::FindLineEnds( PNS_LINE* aLine, PNS_JOINT& aA, PNS_JOINT& aB ) { aA = *FindJoint( aLine->CPoint( 0 ), aLine ); aB = *FindJoint( aLine->CPoint( -1 ), aLine ); } void PNS_NODE::MapConnectivity ( PNS_JOINT* aStart, std::vector& aFoundJoints ) { std::deque searchQueue; std::set processed; searchQueue.push_back( aStart ); processed.insert( aStart ); while( !searchQueue.empty() ) { PNS_JOINT* current = searchQueue.front(); searchQueue.pop_front(); BOOST_FOREACH( PNS_ITEM* item, current->LinkList() ) { if ( item->OfKind( PNS_ITEM::SEGMENT ) ) { PNS_SEGMENT* seg = static_cast( item ); PNS_JOINT* a = FindJoint( seg->Seg().A, seg ); PNS_JOINT* b = FindJoint( seg->Seg().B, seg ); PNS_JOINT* next = ( *a == *current ) ? b : a; if( processed.find( next ) == processed.end() ) { processed.insert( next ); searchQueue.push_back( next ); } } } } BOOST_FOREACH(PNS_JOINT* jt, processed) aFoundJoints.push_back( jt ); } PNS_ITEM* PNS_NODE::NearestUnconnectedItem( PNS_JOINT* aStart, int* aAnchor, int aKindMask ) { std::set disconnected; std::vector joints; AllItemsInNet( aStart->Net(), disconnected ); MapConnectivity ( aStart, joints ); BOOST_FOREACH( PNS_JOINT *jt, joints ) { BOOST_FOREACH( PNS_ITEM* link, jt->LinkList() ) { if( disconnected.find( link ) != disconnected.end() ) disconnected.erase( link ); } } int best_dist = INT_MAX; PNS_ITEM* best = NULL; BOOST_FOREACH( PNS_ITEM* item, disconnected ) { if( item->OfKind( aKindMask ) ) { for(int i = 0; i < item->AnchorCount(); i++) { VECTOR2I p = item->Anchor( i ); int d = ( p - aStart->Pos() ).EuclideanNorm(); if( d < best_dist ) { best_dist = d; best = item; if( aAnchor ) *aAnchor = i; } } } } return best; } int PNS_NODE::FindLinesBetweenJoints( PNS_JOINT& aA, PNS_JOINT& aB, std::vector& aLines ) { BOOST_FOREACH( PNS_ITEM* item, aA.LinkList() ) { if( item->Kind() == PNS_ITEM::SEGMENT ) { PNS_SEGMENT* seg = static_cast( item ); PNS_LINE* line = AssembleLine( seg ); PNS_JOINT j_start, j_end; FindLineEnds( line, j_start, j_end ); int id_start = line->CLine().Find( aA.Pos() ); int id_end = line->CLine().Find( aB.Pos() ); if( id_end < id_start ) std::swap( id_end, id_start ); if( id_start >= 0 && id_end >= 0 ) { line->ClipVertexRange ( id_start, id_end ); aLines.push_back( line ); } else delete line; } } return 0; } PNS_JOINT* PNS_NODE::FindJoint( const VECTOR2I& aPos, int aLayer, int aNet ) { PNS_JOINT::HASH_TAG tag; tag.net = aNet; tag.pos = aPos; JOINT_MAP::iterator f = m_joints.find( tag ), end = m_joints.end(); if( f == end && !isRoot() ) { end = m_root->m_joints.end(); f = m_root->m_joints.find( tag ); // m_root->FindJoint(aPos, aLayer, aNet); } if( f == end ) return NULL; while( f != end ) { if( f->second.Layers().Overlaps( aLayer ) ) return &f->second; ++f; } return NULL; } PNS_JOINT& PNS_NODE::touchJoint( const VECTOR2I& aPos, const PNS_LAYERSET& aLayers, int aNet ) { PNS_JOINT::HASH_TAG tag; tag.pos = aPos; tag.net = aNet; // try to find the joint in this node. JOINT_MAP::iterator f = m_joints.find( tag ); std::pair range; // not found and we are not root? find in the root and copy results here. if( f == m_joints.end() && !isRoot() ) { range = m_root->m_joints.equal_range( tag ); for( f = range.first; f != range.second; ++f ) m_joints.insert( *f ); } // now insert and combine overlapping joints PNS_JOINT jt( aPos, aLayers, aNet ); bool merged; do { merged = false; range = m_joints.equal_range( tag ); if( range.first == m_joints.end() ) break; for( f = range.first; f != range.second; ++f ) { if( aLayers.Overlaps( f->second.Layers() ) ) { jt.Merge( f->second ); m_joints.erase( f ); merged = true; break; } } } while( merged ); return m_joints.insert( TagJointPair( tag, jt ) )->second; } void PNS_JOINT::Dump() const { printf( "joint layers %d-%d, net %d, pos %s, links: %d\n", m_layers.Start(), m_layers.End(), m_tag.net, m_tag.pos.Format().c_str(), LinkCount() ); } void PNS_NODE::linkJoint( const VECTOR2I& aPos, const PNS_LAYERSET& aLayers, int aNet, PNS_ITEM* aWhere ) { PNS_JOINT& jt = touchJoint( aPos, aLayers, aNet ); jt.Link( aWhere ); } void PNS_NODE::unlinkJoint( const VECTOR2I& aPos, const PNS_LAYERSET& aLayers, int aNet, PNS_ITEM* aWhere ) { // fixme: remove dangling joints PNS_JOINT& jt = touchJoint( aPos, aLayers, aNet ); jt.Unlink( aWhere ); } void PNS_NODE::Dump( bool aLong ) { #if 0 boost::unordered_set all_segs; SHAPE_INDEX_LIST::iterator i; for( i = m_items.begin(); i != m_items.end(); i++ ) { if( (*i)->GetKind() == PNS_ITEM::SEGMENT ) all_segs.insert( static_cast( *i ) ); } if( !isRoot() ) { for( i = m_root->m_items.begin(); i != m_root->m_items.end(); i++ ) { if( (*i)->GetKind() == PNS_ITEM::SEGMENT && !overrides( *i ) ) all_segs.insert( static_cast(*i) ); } } JOINT_MAP::iterator j; if( aLong ) for( j = m_joints.begin(); j != m_joints.end(); ++j ) { printf( "joint : %s, links : %d\n", j->second.GetPos().Format().c_str(), j->second.LinkCount() ); PNS_JOINT::LINKED_ITEMS::const_iterator k; for( k = j->second.GetLinkList().begin(); k != j->second.GetLinkList().end(); ++k ) { const PNS_ITEM* m_item = *k; switch( m_item->GetKind() ) { case PNS_ITEM::SEGMENT: { const PNS_SEGMENT* seg = static_cast( m_item ); printf( " -> seg %s %s\n", seg->GetSeg().A.Format().c_str(), seg->GetSeg().B.Format().c_str() ); break; } default: break; } } } int lines_count = 0; while( !all_segs.empty() ) { PNS_SEGMENT* s = *all_segs.begin(); PNS_LINE* l = AssembleLine( s ); PNS_LINE::LinkedSegments* seg_refs = l->GetLinkedSegments(); if( aLong ) printf( "Line: %s, net %d ", l->GetLine().Format().c_str(), l->GetNet() ); for( std::vector::iterator j = seg_refs->begin(); j != seg_refs->end(); ++j ) { printf( "%s ", (*j)->GetSeg().A.Format().c_str() ); if( j + 1 == seg_refs->end() ) printf( "%s\n", (*j)->GetSeg().B.Format().c_str() ); all_segs.erase( *j ); } lines_count++; } printf( "Local joints: %d, lines : %d \n", m_joints.size(), lines_count ); #endif } void PNS_NODE::GetUpdatedItems( ITEM_VECTOR& aRemoved, ITEM_VECTOR& aAdded ) { aRemoved.reserve( m_override.size() ); aAdded.reserve( m_index->Size() ); if( isRoot() ) return; BOOST_FOREACH( PNS_ITEM* item, m_override ) aRemoved.push_back( item ); for( PNS_INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i ) aAdded.push_back( *i ); } void PNS_NODE::releaseChildren() { // copy the kids as the PNS_NODE destructor erases the item from the parent node. std::vector kids = m_children; BOOST_FOREACH( PNS_NODE * node, kids ) { node->releaseChildren(); delete node; } } void PNS_NODE::Commit( PNS_NODE* aNode ) { if( aNode->isRoot() ) return; BOOST_FOREACH( PNS_ITEM * item, aNode->m_override ) Remove( item ); for( PNS_INDEX::ITEM_SET::iterator i = aNode->m_index->begin(); i != aNode->m_index->end(); ++i ) { (*i)->SetRank( -1 ); (*i)->Unmark(); Add( *i ); } releaseChildren(); } void PNS_NODE::KillChildren() { assert ( isRoot() ); releaseChildren(); } void PNS_NODE::AllItemsInNet( int aNet, std::set& aItems ) { PNS_INDEX::NET_ITEMS_LIST* l_cur = m_index->GetItemsForNet( aNet ); if( l_cur ) { BOOST_FOREACH( PNS_ITEM*item, *l_cur ) aItems.insert( item ); } if( !isRoot() ) { PNS_INDEX::NET_ITEMS_LIST* l_root = m_root->m_index->GetItemsForNet( aNet ); if( l_root ) for( PNS_INDEX::NET_ITEMS_LIST::iterator i = l_root->begin(); i!= l_root->end(); ++i ) if( !overrides( *i ) ) aItems.insert( *i ); } } void PNS_NODE::ClearRanks() { for( PNS_INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i ) { (*i)->SetRank( -1 ); (*i)->Mark( 0 ); } } int PNS_NODE::FindByMarker( int aMarker, PNS_ITEMSET& aItems ) { for( PNS_INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i ) { if( (*i)->Marker() & aMarker ) aItems.Add( *i ); } return 0; } int PNS_NODE::RemoveByMarker( int aMarker ) { for( PNS_INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i ) { if ( (*i)->Marker() & aMarker ) { Remove( *i ); } } return 0; } PNS_SEGMENT* PNS_NODE::findRedundantSegment ( PNS_SEGMENT *aSeg ) { PNS_JOINT* jtStart = FindJoint ( aSeg->Seg().A, aSeg ); if( !jtStart ) return NULL; BOOST_FOREACH( PNS_ITEM* item, jtStart->LinkList() ) { if( item->OfKind( PNS_ITEM::SEGMENT ) ) { PNS_SEGMENT* seg2 = (PNS_SEGMENT*) item; const VECTOR2I a1( aSeg->Seg().A ); const VECTOR2I b1( aSeg->Seg().B ); const VECTOR2I a2( seg2->Seg().A ); const VECTOR2I b2( seg2->Seg().B ); if( seg2->Layers().Start() == aSeg->Layers().Start() && ( ( a1 == a2 && b1 == b2 ) || ( a1 == b2 && a2 == b1 ) ) ) return seg2; } } return NULL; }