/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2012 Torsten Hueter, torstenhtr gmx.de * Copyright (C) 2012-2023 Kicad Developers, see AUTHORS.txt for contributors. * Copyright (C) 2013-2017 CERN * @author Maciej Suminski * * Graphics Abstraction Layer (GAL) for OpenGL * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ // Apple, in their infinite wisdom, has decided to mark OpenGL as deprecated. // Luckily we can silence warnings about its deprecation. #ifdef __APPLE__ #define GL_SILENCE_DEPRECATION 1 #endif #include #include #include #include #include #include #include #include #include #include // for KiROUND #include #include #include #include #include #include #include #include #include #include #include #include using namespace std::placeholders; using namespace KIGFX; //#define DISABLE_BITMAP_CACHE // The current font is "Ubuntu Mono" available under Ubuntu Font Licence 1.0 // (see ubuntu-font-licence-1.0.txt for details) #include "gl_resources.h" #include #include using namespace KIGFX::BUILTIN_FONT; static void InitTesselatorCallbacks( GLUtesselator* aTesselator ); static const int glAttributes[] = { WX_GL_RGBA, WX_GL_DOUBLEBUFFER, WX_GL_DEPTH_SIZE, 8, 0 }; wxGLContext* OPENGL_GAL::m_glMainContext = nullptr; int OPENGL_GAL::m_instanceCounter = 0; GLuint OPENGL_GAL::g_fontTexture = 0; bool OPENGL_GAL::m_isBitmapFontLoaded = false; namespace KIGFX { class GL_BITMAP_CACHE { public: GL_BITMAP_CACHE() : m_cacheSize( 0 ) {} ~GL_BITMAP_CACHE(); GLuint RequestBitmap( const BITMAP_BASE* aBitmap ); private: struct CACHED_BITMAP { GLuint id; int w, h; size_t size; }; GLuint cacheBitmap( const BITMAP_BASE* aBitmap ); const size_t m_cacheMaxElements = 50; const size_t m_cacheMaxSize = 256 * 1024 * 1024; std::map m_bitmaps; std::list m_cacheLru; size_t m_cacheSize; std::list m_freedTextureIds; }; }; // namespace KIGFX GL_BITMAP_CACHE::~GL_BITMAP_CACHE() { for( auto& bitmap : m_bitmaps ) glDeleteTextures( 1, &bitmap.second.id ); } GLuint GL_BITMAP_CACHE::RequestBitmap( const BITMAP_BASE* aBitmap ) { #ifndef DISABLE_BITMAP_CACHE auto it = m_bitmaps.find( aBitmap->GetImageID() ); if( it != m_bitmaps.end() ) { // A bitmap is found in cache bitmap. Ensure the associated texture is still valid. if( glIsTexture( it->second.id ) ) { return it->second.id; } else { // Delete the invalid bitmap cache and its data glDeleteTextures( 1, &it->second.id ); m_freedTextureIds.emplace_back( it->second.id ); auto listIt = std::find( m_cacheLru.begin(), m_cacheLru.end(), it->first ); if( listIt != m_cacheLru.end() ) m_cacheLru.erase( listIt ); m_cacheSize -= it->second.size; m_bitmaps.erase( it ); } // the cached bitmap is not valid and deleted, it will be recreated. } #endif return cacheBitmap( aBitmap ); } GLuint GL_BITMAP_CACHE::cacheBitmap( const BITMAP_BASE* aBitmap ) { CACHED_BITMAP bmp; const wxImage* imgPtr = aBitmap->GetOriginalImageData(); if( !imgPtr ) return std::numeric_limits< GLuint >::max(); const wxImage& imgData = *imgPtr; bmp.w = imgData.GetSize().x; bmp.h = imgData.GetSize().y; GLuint textureID; if( m_freedTextureIds.empty() ) { glGenTextures( 1, &textureID ); } else { textureID = m_freedTextureIds.front(); m_freedTextureIds.pop_front(); } bmp.size = bmp.w * bmp.h * 4; auto buf = std::make_unique( bmp.size ); for( int y = 0; y < bmp.h; y++ ) { for( int x = 0; x < bmp.w; x++ ) { uint8_t* p = buf.get() + ( bmp.w * y + x ) * 4; p[0] = imgData.GetRed( x, y ); p[1] = imgData.GetGreen( x, y ); p[2] = imgData.GetBlue( x, y ); if( imgData.HasAlpha() ) p[3] = imgData.GetAlpha( x, y ); else if( imgData.HasMask() && p[0] == imgData.GetMaskRed() && p[1] == imgData.GetMaskGreen() && p[2] == imgData.GetMaskBlue() ) p[3] = wxALPHA_TRANSPARENT; else p[3] = wxALPHA_OPAQUE; } } glBindTexture( GL_TEXTURE_2D, textureID ); glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA8, bmp.w, bmp.h, 0, GL_RGBA, GL_UNSIGNED_BYTE, buf.get() ); glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST ); glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST ); bmp.id = textureID; #ifndef DISABLE_BITMAP_CACHE m_cacheLru.emplace_back( aBitmap->GetImageID() ); m_cacheSize += bmp.size; m_bitmaps.emplace( aBitmap->GetImageID(), std::move( bmp ) ); if( m_cacheLru.size() > m_cacheMaxElements || m_cacheSize > m_cacheMaxSize ) { KIID last = m_cacheLru.front(); CACHED_BITMAP& cachedBitmap = m_bitmaps[last]; m_cacheSize -= cachedBitmap.size; glDeleteTextures( 1, &cachedBitmap.id ); m_freedTextureIds.emplace_back( cachedBitmap.id ); m_bitmaps.erase( last ); m_cacheLru.pop_front(); } #endif return textureID; } OPENGL_GAL::OPENGL_GAL( GAL_DISPLAY_OPTIONS& aDisplayOptions, wxWindow* aParent, wxEvtHandler* aMouseListener, wxEvtHandler* aPaintListener, const wxString& aName ) : GAL( aDisplayOptions ), HIDPI_GL_CANVAS( aParent, wxID_ANY, (int*) glAttributes, wxDefaultPosition, wxDefaultSize, wxEXPAND, aName ), m_mouseListener( aMouseListener ), m_paintListener( aPaintListener ), m_currentManager( nullptr ), m_cachedManager( nullptr ), m_nonCachedManager( nullptr ), m_overlayManager( nullptr ), m_tempManager( nullptr ), m_mainBuffer( 0 ), m_overlayBuffer( 0 ), m_tempBuffer( 0 ), m_isContextLocked( false ), m_lockClientCookie( 0 ) { if( m_glMainContext == nullptr ) { m_glMainContext = GL_CONTEXT_MANAGER::Get().CreateCtx( this ); if( !m_glMainContext ) throw std::runtime_error( "Could not create the main OpenGL context" ); m_glPrivContext = m_glMainContext; } else { m_glPrivContext = GL_CONTEXT_MANAGER::Get().CreateCtx( this, m_glMainContext ); if( !m_glPrivContext ) throw std::runtime_error( "Could not create a private OpenGL context" ); } m_shader = new SHADER(); ++m_instanceCounter; m_bitmapCache = std::make_unique(); m_compositor = new OPENGL_COMPOSITOR; m_compositor->SetAntialiasingMode( m_options.gl_antialiasing_mode ); // Initialize the flags m_isFramebufferInitialized = false; m_isBitmapFontInitialized = false; m_isInitialized = false; m_isGrouping = false; m_groupCounter = 0; // Connect the native cursor handler Connect( wxEVT_SET_CURSOR, wxSetCursorEventHandler( OPENGL_GAL::onSetNativeCursor ), nullptr, this ); // Connecting the event handlers Connect( wxEVT_PAINT, wxPaintEventHandler( OPENGL_GAL::onPaint ) ); // Mouse events are skipped to the parent Connect( wxEVT_MOTION, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_LEFT_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_LEFT_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_LEFT_DCLICK, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_MIDDLE_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_MIDDLE_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_MIDDLE_DCLICK, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_RIGHT_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_RIGHT_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_RIGHT_DCLICK, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_AUX1_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_AUX1_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_AUX1_DCLICK, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_AUX2_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_AUX2_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_AUX2_DCLICK, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_MOUSEWHEEL, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_MAGNIFY, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); #if defined _WIN32 || defined _WIN64 Connect( wxEVT_ENTER_WINDOW, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); #endif SetSize( aParent->GetClientSize() ); m_screenSize = ToVECTOR2I( GetNativePixelSize() ); // Grid color settings are different in Cairo and OpenGL SetGridColor( COLOR4D( 0.8, 0.8, 0.8, 0.1 ) ); SetAxesColor( COLOR4D( BLUE ) ); // Tesselator initialization m_tesselator = gluNewTess(); InitTesselatorCallbacks( m_tesselator ); gluTessProperty( m_tesselator, GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_POSITIVE ); SetTarget( TARGET_NONCACHED ); // Avoid uninitialized variables: ufm_worldPixelSize = 1; ufm_screenPixelSize = 1; ufm_pixelSizeMultiplier = 1; ufm_antialiasingOffset = 1; m_swapInterval = 0; } OPENGL_GAL::~OPENGL_GAL() { GL_CONTEXT_MANAGER::Get().LockCtx( m_glPrivContext, this ); --m_instanceCounter; glFlush(); gluDeleteTess( m_tesselator ); ClearCache(); delete m_compositor; if( m_isInitialized ) { delete m_cachedManager; delete m_nonCachedManager; delete m_overlayManager; delete m_tempManager; } GL_CONTEXT_MANAGER::Get().UnlockCtx( m_glPrivContext ); // If it was the main context, then it will be deleted // when the last OpenGL GAL instance is destroyed (a few lines below) if( m_glPrivContext != m_glMainContext ) GL_CONTEXT_MANAGER::Get().DestroyCtx( m_glPrivContext ); delete m_shader; // Are we destroying the last GAL instance? if( m_instanceCounter == 0 ) { GL_CONTEXT_MANAGER::Get().LockCtx( m_glMainContext, this ); if( m_isBitmapFontLoaded ) { glDeleteTextures( 1, &g_fontTexture ); m_isBitmapFontLoaded = false; } GL_CONTEXT_MANAGER::Get().UnlockCtx( m_glMainContext ); GL_CONTEXT_MANAGER::Get().DestroyCtx( m_glMainContext ); m_glMainContext = nullptr; } } wxString OPENGL_GAL::CheckFeatures( GAL_DISPLAY_OPTIONS& aOptions ) { wxString retVal = wxEmptyString; wxFrame* testFrame = new wxFrame( nullptr, wxID_ANY, wxT( "" ), wxDefaultPosition, wxSize( 1, 1 ), wxFRAME_TOOL_WINDOW | wxNO_BORDER ); KIGFX::OPENGL_GAL* opengl_gal = nullptr; try { opengl_gal = new KIGFX::OPENGL_GAL( aOptions, testFrame ); testFrame->Raise(); testFrame->Show(); GAL_CONTEXT_LOCKER lock( opengl_gal ); opengl_gal->init(); } catch( std::runtime_error& err ) { //Test failed retVal = wxString( err.what() ); } delete opengl_gal; delete testFrame; return retVal; } void OPENGL_GAL::PostPaint( wxPaintEvent& aEvent ) { // posts an event to m_paint_listener to ask for redraw the canvas. if( m_paintListener ) wxPostEvent( m_paintListener, aEvent ); } bool OPENGL_GAL::updatedGalDisplayOptions( const GAL_DISPLAY_OPTIONS& aOptions ) { GAL_CONTEXT_LOCKER lock( this ); bool refresh = false; if( m_options.gl_antialiasing_mode != m_compositor->GetAntialiasingMode() ) { m_compositor->SetAntialiasingMode( m_options.gl_antialiasing_mode ); m_isFramebufferInitialized = false; refresh = true; } if( m_options.m_scaleFactor != GetScaleFactor() ) { SetScaleFactor( m_options.m_scaleFactor ); refresh = true; } if( super::updatedGalDisplayOptions( aOptions ) || refresh ) { Refresh(); refresh = true; } return refresh; } double OPENGL_GAL::getWorldPixelSize() const { MATRIX3x3D matrix = GetScreenWorldMatrix(); return std::min( std::abs( matrix.GetScale().x ), std::abs( matrix.GetScale().y ) ); } VECTOR2D OPENGL_GAL::getScreenPixelSize() const { double sf = GetScaleFactor(); return VECTOR2D( 2.0 / (double) ( m_screenSize.x * sf ), 2.0 / (double) ( m_screenSize.y * sf ) ); } void OPENGL_GAL::BeginDrawing() { #ifdef KICAD_GAL_PROFILE PROF_TIMER totalRealTime( "OPENGL_GAL::beginDrawing()", true ); #endif /* KICAD_GAL_PROFILE */ wxASSERT_MSG( m_isContextLocked, "GAL_DRAWING_CONTEXT RAII object should have locked context. " "Calling GAL::beginDrawing() directly is not allowed." ); wxASSERT_MSG( IsVisible(), "GAL::beginDrawing() must not be entered when GAL is not visible. " "Other drawing routines will expect everything to be initialized " "which will not be the case." ); if( !m_isInitialized ) init(); // Set up the view port glMatrixMode( GL_PROJECTION ); glLoadIdentity(); // Create the screen transformation (Do the RH-LH conversion here) glOrtho( 0, (GLint) m_screenSize.x, (GLsizei) m_screenSize.y, 0, -m_depthRange.x, -m_depthRange.y ); if( !m_isFramebufferInitialized ) { // Prepare rendering target buffers m_compositor->Initialize(); m_mainBuffer = m_compositor->CreateBuffer(); try { m_tempBuffer = m_compositor->CreateBuffer(); } catch( const std::runtime_error& ) { wxLogVerbose( "Could not create a framebuffer for diff mode blending.\n" ); m_tempBuffer = 0; } try { m_overlayBuffer = m_compositor->CreateBuffer(); } catch( const std::runtime_error& ) { wxLogVerbose( "Could not create a framebuffer for overlays.\n" ); m_overlayBuffer = 0; } m_isFramebufferInitialized = true; } m_compositor->Begin(); // Disable 2D Textures glDisable( GL_TEXTURE_2D ); glShadeModel( GL_FLAT ); // Enable the depth buffer glEnable( GL_DEPTH_TEST ); glDepthFunc( GL_LESS ); // Setup blending, required for transparent objects glEnable( GL_BLEND ); glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA ); glMatrixMode( GL_MODELVIEW ); // Set up the world <-> screen transformation ComputeWorldScreenMatrix(); GLdouble matrixData[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 }; matrixData[0] = m_worldScreenMatrix.m_data[0][0]; matrixData[1] = m_worldScreenMatrix.m_data[1][0]; matrixData[2] = m_worldScreenMatrix.m_data[2][0]; matrixData[4] = m_worldScreenMatrix.m_data[0][1]; matrixData[5] = m_worldScreenMatrix.m_data[1][1]; matrixData[6] = m_worldScreenMatrix.m_data[2][1]; matrixData[12] = m_worldScreenMatrix.m_data[0][2]; matrixData[13] = m_worldScreenMatrix.m_data[1][2]; matrixData[14] = m_worldScreenMatrix.m_data[2][2]; glLoadMatrixd( matrixData ); // Set defaults SetFillColor( m_fillColor ); SetStrokeColor( m_strokeColor ); // Remove all previously stored items m_nonCachedManager->Clear(); m_overlayManager->Clear(); m_tempManager->Clear(); m_cachedManager->BeginDrawing(); m_nonCachedManager->BeginDrawing(); m_overlayManager->BeginDrawing(); m_tempManager->BeginDrawing(); if( !m_isBitmapFontInitialized ) { // Keep bitmap font texture always bound to the second texturing unit const GLint FONT_TEXTURE_UNIT = 2; // Either load the font atlas to video memory, or simply bind it to a texture unit if( !m_isBitmapFontLoaded ) { glActiveTexture( GL_TEXTURE0 + FONT_TEXTURE_UNIT ); glGenTextures( 1, &g_fontTexture ); glBindTexture( GL_TEXTURE_2D, g_fontTexture ); glTexImage2D( GL_TEXTURE_2D, 0, GL_RGB8, font_image.width, font_image.height, 0, GL_RGB, GL_UNSIGNED_BYTE, font_image.pixels ); glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); checkGlError( "loading bitmap font", __FILE__, __LINE__ ); glActiveTexture( GL_TEXTURE0 ); m_isBitmapFontLoaded = true; } else { glActiveTexture( GL_TEXTURE0 + FONT_TEXTURE_UNIT ); glBindTexture( GL_TEXTURE_2D, g_fontTexture ); glActiveTexture( GL_TEXTURE0 ); } // Set shader parameter GLint ufm_fontTexture = m_shader->AddParameter( "u_fontTexture" ); GLint ufm_fontTextureWidth = m_shader->AddParameter( "u_fontTextureWidth" ); ufm_worldPixelSize = m_shader->AddParameter( "u_worldPixelSize" ); ufm_screenPixelSize = m_shader->AddParameter( "u_screenPixelSize" ); ufm_pixelSizeMultiplier = m_shader->AddParameter( "u_pixelSizeMultiplier" ); ufm_antialiasingOffset = m_shader->AddParameter( "u_antialiasingOffset" ); m_shader->Use(); m_shader->SetParameter( ufm_fontTexture, (int) FONT_TEXTURE_UNIT ); m_shader->SetParameter( ufm_fontTextureWidth, (int) font_image.width ); m_shader->Deactivate(); checkGlError( "setting bitmap font sampler as shader parameter", __FILE__, __LINE__ ); m_isBitmapFontInitialized = true; } m_shader->Use(); m_shader->SetParameter( ufm_worldPixelSize, (float) ( getWorldPixelSize() / GetScaleFactor() ) ); const VECTOR2D& screenPixelSize = getScreenPixelSize(); m_shader->SetParameter( ufm_screenPixelSize, screenPixelSize ); double pixelSizeMultiplier = m_compositor->GetAntialiasSupersamplingFactor(); m_shader->SetParameter( ufm_pixelSizeMultiplier, (float) pixelSizeMultiplier ); VECTOR2D renderingOffset = m_compositor->GetAntialiasRenderingOffset(); renderingOffset.x *= screenPixelSize.x; renderingOffset.y *= screenPixelSize.y; m_shader->SetParameter( ufm_antialiasingOffset, renderingOffset ); m_shader->Deactivate(); // Something betreen BeginDrawing and EndDrawing seems to depend on // this texture unit being active, but it does not assure it itself. glActiveTexture( GL_TEXTURE0 ); // Unbind buffers - set compositor for direct drawing m_compositor->SetBuffer( OPENGL_COMPOSITOR::DIRECT_RENDERING ); #ifdef KICAD_GAL_PROFILE totalRealTime.Stop(); wxLogTrace( traceGalProfile, wxT( "OPENGL_GAL::beginDrawing(): %.1f ms" ), totalRealTime.msecs() ); #endif /* KICAD_GAL_PROFILE */ } void OPENGL_GAL::EndDrawing() { wxASSERT_MSG( m_isContextLocked, "What happened to the context lock?" ); PROF_TIMER cntTotal("gl-end-total"); PROF_TIMER cntEndCached("gl-end-cached"); PROF_TIMER cntEndNoncached("gl-end-noncached"); PROF_TIMER cntEndOverlay("gl-end-overlay"); PROF_TIMER cntComposite("gl-composite"); PROF_TIMER cntSwap("gl-swap"); cntTotal.Start(); // Cached & non-cached containers are rendered to the same buffer m_compositor->SetBuffer( m_mainBuffer ); cntEndNoncached.Start(); m_nonCachedManager->EndDrawing(); cntEndNoncached.Stop(); cntEndCached.Start(); m_cachedManager->EndDrawing(); cntEndCached.Stop(); cntEndOverlay.Start(); // Overlay container is rendered to a different buffer if( m_overlayBuffer ) m_compositor->SetBuffer( m_overlayBuffer ); m_overlayManager->EndDrawing(); cntEndOverlay.Stop(); cntComposite.Start(); // Be sure that the framebuffer is not colorized (happens on specific GPU&drivers combinations) glColor4d( 1.0, 1.0, 1.0, 1.0 ); // Draw the remaining contents, blit the rendering targets to the screen, swap the buffers m_compositor->DrawBuffer( m_mainBuffer ); if( m_overlayBuffer ) m_compositor->DrawBuffer( m_overlayBuffer ); m_compositor->Present(); blitCursor(); cntComposite.Stop(); cntSwap.Start(); SwapBuffers(); cntSwap.Stop(); cntTotal.Stop(); KI_TRACE( traceGalProfile, "Timing: %s %s %s %s %s %s\n", cntTotal.to_string(), cntEndCached.to_string(), cntEndNoncached.to_string(), cntEndOverlay.to_string(), cntComposite.to_string(), cntSwap.to_string() ); } void OPENGL_GAL::LockContext( int aClientCookie ) { wxASSERT_MSG( !m_isContextLocked, "Context already locked." ); m_isContextLocked = true; m_lockClientCookie = aClientCookie; GL_CONTEXT_MANAGER::Get().LockCtx( m_glPrivContext, this ); } void OPENGL_GAL::UnlockContext( int aClientCookie ) { wxASSERT_MSG( m_isContextLocked, "Context not locked. A GAL_CONTEXT_LOCKER RAII object must " "be stacked rather than making separate lock/unlock calls." ); wxASSERT_MSG( m_lockClientCookie == aClientCookie, "Context was locked by a different client. " "Should not be possible with RAII objects." ); m_isContextLocked = false; GL_CONTEXT_MANAGER::Get().UnlockCtx( m_glPrivContext ); } void OPENGL_GAL::beginUpdate() { wxASSERT_MSG( m_isContextLocked, "GAL_UPDATE_CONTEXT RAII object should have locked context. " "Calling this from anywhere else is not allowed." ); wxASSERT_MSG( IsVisible(), "GAL::beginUpdate() must not be entered when GAL is not visible. " "Other update routines will expect everything to be initialized " "which will not be the case." ); if( !m_isInitialized ) init(); m_cachedManager->Map(); } void OPENGL_GAL::endUpdate() { if( !m_isInitialized ) return; m_cachedManager->Unmap(); } void OPENGL_GAL::DrawLine( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint ) { m_currentManager->Color( m_strokeColor.r, m_strokeColor.g, m_strokeColor.b, m_strokeColor.a ); drawLineQuad( aStartPoint, aEndPoint ); } void OPENGL_GAL::DrawSegment( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint, double aWidth ) { drawSegment( aStartPoint, aEndPoint, aWidth ); } void OPENGL_GAL::drawSegment( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint, double aWidth, bool aReserve ) { VECTOR2D startEndVector = aEndPoint - aStartPoint; double lineLength = startEndVector.EuclideanNorm(); float startx = aStartPoint.x; float starty = aStartPoint.y; float endx = aStartPoint.x + lineLength; float endy = aStartPoint.y + lineLength; // Be careful about floating point rounding. As we draw segments in larger and larger // coordinates, the shader (which uses floats) will lose precision and stop drawing small // segments. In this case, we need to draw a circle for the minimal segment. if( startx == endx || starty == endy ) { drawCircle( aStartPoint, aWidth / 2, aReserve ); return; } if( m_isFillEnabled || aWidth == 1.0 ) { m_currentManager->Color( m_fillColor.r, m_fillColor.g, m_fillColor.b, m_fillColor.a ); SetLineWidth( aWidth ); drawLineQuad( aStartPoint, aEndPoint, aReserve ); } else { EDA_ANGLE lineAngle( startEndVector ); // Outlined tracks SetLineWidth( 1.0 ); m_currentManager->Color( m_strokeColor.r, m_strokeColor.g, m_strokeColor.b, m_strokeColor.a ); Save(); if( aReserve ) m_currentManager->Reserve( 6 + 6 + 3 + 3 ); // Two line quads and two semicircles m_currentManager->Translate( aStartPoint.x, aStartPoint.y, 0.0 ); m_currentManager->Rotate( lineAngle.AsRadians(), 0.0f, 0.0f, 1.0f ); drawLineQuad( VECTOR2D( 0.0, aWidth / 2.0 ), VECTOR2D( lineLength, aWidth / 2.0 ), false ); drawLineQuad( VECTOR2D( 0.0, -aWidth / 2.0 ), VECTOR2D( lineLength, -aWidth / 2.0 ), false ); // Draw line caps drawStrokedSemiCircle( VECTOR2D( 0.0, 0.0 ), aWidth / 2, M_PI / 2, false ); drawStrokedSemiCircle( VECTOR2D( lineLength, 0.0 ), aWidth / 2, -M_PI / 2, false ); Restore(); } } void OPENGL_GAL::DrawCircle( const VECTOR2D& aCenterPoint, double aRadius ) { drawCircle( aCenterPoint, aRadius ); } void OPENGL_GAL::drawCircle( const VECTOR2D& aCenterPoint, double aRadius, bool aReserve ) { if( m_isFillEnabled ) { if( aReserve ) m_currentManager->Reserve( 3 ); m_currentManager->Color( m_fillColor.r, m_fillColor.g, m_fillColor.b, m_fillColor.a ); /* Draw a triangle that contains the circle, then shade it leaving only the circle. * Parameters given to Shader() are indices of the triangle's vertices * (if you want to understand more, check the vertex shader source [shader.vert]). * Shader uses this coordinates to determine if fragments are inside the circle or not. * Does the calculations in the vertex shader now (pixel alignment) * v2 * /\ * //\\ * v0 /_\/_\ v1 */ m_currentManager->Shader( SHADER_FILLED_CIRCLE, 1.0, aRadius ); m_currentManager->Vertex( aCenterPoint.x, aCenterPoint.y, m_layerDepth ); m_currentManager->Shader( SHADER_FILLED_CIRCLE, 2.0, aRadius ); m_currentManager->Vertex( aCenterPoint.x, aCenterPoint.y, m_layerDepth ); m_currentManager->Shader( SHADER_FILLED_CIRCLE, 3.0, aRadius ); m_currentManager->Vertex( aCenterPoint.x, aCenterPoint.y, m_layerDepth ); } if( m_isStrokeEnabled ) { if( aReserve ) m_currentManager->Reserve( 3 ); m_currentManager->Color( m_strokeColor.r, m_strokeColor.g, m_strokeColor.b, m_strokeColor.a ); /* Draw a triangle that contains the circle, then shade it leaving only the circle. * Parameters given to Shader() are indices of the triangle's vertices * (if you want to understand more, check the vertex shader source [shader.vert]). * and the line width. Shader uses this coordinates to determine if fragments are * inside the circle or not. * v2 * /\ * //\\ * v0 /_\/_\ v1 */ m_currentManager->Shader( SHADER_STROKED_CIRCLE, 1.0, aRadius, m_lineWidth ); m_currentManager->Vertex( aCenterPoint.x, // v0 aCenterPoint.y, m_layerDepth ); m_currentManager->Shader( SHADER_STROKED_CIRCLE, 2.0, aRadius, m_lineWidth ); m_currentManager->Vertex( aCenterPoint.x, // v1 aCenterPoint.y, m_layerDepth ); m_currentManager->Shader( SHADER_STROKED_CIRCLE, 3.0, aRadius, m_lineWidth ); m_currentManager->Vertex( aCenterPoint.x, aCenterPoint.y, // v2 m_layerDepth ); } } void OPENGL_GAL::DrawArc( const VECTOR2D& aCenterPoint, double aRadius, const EDA_ANGLE& aStartAngle, const EDA_ANGLE& aAngle ) { if( aRadius <= 0 ) return; double startAngle = aStartAngle.AsRadians(); double endAngle = startAngle + aAngle.AsRadians(); // Normalize arc angles SWAP( startAngle, >, endAngle ); const double alphaIncrement = calcAngleStep( aRadius ); Save(); m_currentManager->Translate( aCenterPoint.x, aCenterPoint.y, 0.0 ); if( m_isFillEnabled ) { double alpha; m_currentManager->Color( m_fillColor.r, m_fillColor.g, m_fillColor.b, m_fillColor.a ); m_currentManager->Shader( SHADER_NONE ); // Triangle fan for( alpha = startAngle; ( alpha + alphaIncrement ) < endAngle; ) { m_currentManager->Reserve( 3 ); m_currentManager->Vertex( 0.0, 0.0, m_layerDepth ); m_currentManager->Vertex( cos( alpha ) * aRadius, sin( alpha ) * aRadius, m_layerDepth ); alpha += alphaIncrement; m_currentManager->Vertex( cos( alpha ) * aRadius, sin( alpha ) * aRadius, m_layerDepth ); } // The last missing triangle const VECTOR2D endPoint( cos( endAngle ) * aRadius, sin( endAngle ) * aRadius ); m_currentManager->Reserve( 3 ); m_currentManager->Vertex( 0.0, 0.0, m_layerDepth ); m_currentManager->Vertex( cos( alpha ) * aRadius, sin( alpha ) * aRadius, m_layerDepth ); m_currentManager->Vertex( endPoint.x, endPoint.y, m_layerDepth ); } if( m_isStrokeEnabled ) { m_currentManager->Color( m_strokeColor.r, m_strokeColor.g, m_strokeColor.b, m_strokeColor.a ); VECTOR2D p( cos( startAngle ) * aRadius, sin( startAngle ) * aRadius ); double alpha; for( alpha = startAngle + alphaIncrement; alpha <= endAngle; alpha += alphaIncrement ) { VECTOR2D p_next( cos( alpha ) * aRadius, sin( alpha ) * aRadius ); DrawLine( p, p_next ); p = p_next; } // Draw the last missing part if( alpha != endAngle ) { VECTOR2D p_last( cos( endAngle ) * aRadius, sin( endAngle ) * aRadius ); DrawLine( p, p_last ); } } Restore(); } void OPENGL_GAL::DrawArcSegment( const VECTOR2D& aCenterPoint, double aRadius, const EDA_ANGLE& aStartAngle, const EDA_ANGLE& aAngle, double aWidth, double aMaxError ) { if( aRadius <= 0 ) { // Arcs of zero radius are a circle of aWidth diameter if( aWidth > 0 ) DrawCircle( aCenterPoint, aWidth / 2.0 ); return; } double startAngle = aStartAngle.AsRadians(); double endAngle = startAngle + aAngle.AsRadians(); // Swap the angles, if start angle is greater than end angle SWAP( startAngle, >, endAngle ); // Calculate the seg count to approximate the arc with aMaxError or less int segCount360 = GetArcToSegmentCount( aRadius, aMaxError, FULL_CIRCLE ); segCount360 = std::max( SEG_PER_CIRCLE_COUNT, segCount360 ); double alphaIncrement = 2.0 * M_PI / segCount360; // Refinement: Use a segment count multiple of 2, because we have a control point // on the middle of the arc, and the look is better if it is on a segment junction // because there is no approx error int seg_count = KiROUND( ( endAngle - startAngle ) / alphaIncrement ); if( seg_count % 2 != 0 ) seg_count += 1; // Recalculate alphaIncrement with a even integer number of segment if( seg_count ) alphaIncrement = ( endAngle - startAngle ) / seg_count; Save(); m_currentManager->Translate( aCenterPoint.x, aCenterPoint.y, 0.0 ); if( m_isStrokeEnabled ) { m_currentManager->Color( m_strokeColor.r, m_strokeColor.g, m_strokeColor.b, m_strokeColor.a ); double width = aWidth / 2.0; VECTOR2D startPoint( cos( startAngle ) * aRadius, sin( startAngle ) * aRadius ); VECTOR2D endPoint( cos( endAngle ) * aRadius, sin( endAngle ) * aRadius ); drawStrokedSemiCircle( startPoint, width, startAngle + M_PI ); drawStrokedSemiCircle( endPoint, width, endAngle ); VECTOR2D pOuter( cos( startAngle ) * ( aRadius + width ), sin( startAngle ) * ( aRadius + width ) ); VECTOR2D pInner( cos( startAngle ) * ( aRadius - width ), sin( startAngle ) * ( aRadius - width ) ); double alpha; for( alpha = startAngle + alphaIncrement; alpha <= endAngle; alpha += alphaIncrement ) { VECTOR2D pNextOuter( cos( alpha ) * ( aRadius + width ), sin( alpha ) * ( aRadius + width ) ); VECTOR2D pNextInner( cos( alpha ) * ( aRadius - width ), sin( alpha ) * ( aRadius - width ) ); DrawLine( pOuter, pNextOuter ); DrawLine( pInner, pNextInner ); pOuter = pNextOuter; pInner = pNextInner; } // Draw the last missing part if( alpha != endAngle ) { VECTOR2D pLastOuter( cos( endAngle ) * ( aRadius + width ), sin( endAngle ) * ( aRadius + width ) ); VECTOR2D pLastInner( cos( endAngle ) * ( aRadius - width ), sin( endAngle ) * ( aRadius - width ) ); DrawLine( pOuter, pLastOuter ); DrawLine( pInner, pLastInner ); } } if( m_isFillEnabled ) { m_currentManager->Color( m_fillColor.r, m_fillColor.g, m_fillColor.b, m_fillColor.a ); SetLineWidth( aWidth ); VECTOR2D p( cos( startAngle ) * aRadius, sin( startAngle ) * aRadius ); double alpha; int lineCount = 0; for( alpha = startAngle + alphaIncrement; alpha <= endAngle; alpha += alphaIncrement ) { lineCount++; } // The last missing part if( alpha != endAngle ) { lineCount++; } reserveLineQuads( lineCount ); for( alpha = startAngle + alphaIncrement; alpha <= endAngle; alpha += alphaIncrement ) { VECTOR2D p_next( cos( alpha ) * aRadius, sin( alpha ) * aRadius ); drawLineQuad( p, p_next, false ); p = p_next; } // Draw the last missing part if( alpha != endAngle ) { VECTOR2D p_last( cos( endAngle ) * aRadius, sin( endAngle ) * aRadius ); drawLineQuad( p, p_last, false ); } } Restore(); } void OPENGL_GAL::DrawRectangle( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint ) { // Compute the diagonal points of the rectangle VECTOR2D diagonalPointA( aEndPoint.x, aStartPoint.y ); VECTOR2D diagonalPointB( aStartPoint.x, aEndPoint.y ); // Fill the rectangle if( m_isFillEnabled ) { m_currentManager->Reserve( 6 ); m_currentManager->Shader( SHADER_NONE ); m_currentManager->Color( m_fillColor.r, m_fillColor.g, m_fillColor.b, m_fillColor.a ); m_currentManager->Vertex( aStartPoint.x, aStartPoint.y, m_layerDepth ); m_currentManager->Vertex( diagonalPointA.x, diagonalPointA.y, m_layerDepth ); m_currentManager->Vertex( aEndPoint.x, aEndPoint.y, m_layerDepth ); m_currentManager->Vertex( aStartPoint.x, aStartPoint.y, m_layerDepth ); m_currentManager->Vertex( aEndPoint.x, aEndPoint.y, m_layerDepth ); m_currentManager->Vertex( diagonalPointB.x, diagonalPointB.y, m_layerDepth ); } // Stroke the outline if( m_isStrokeEnabled ) { m_currentManager->Color( m_strokeColor.r, m_strokeColor.g, m_strokeColor.b, m_strokeColor.a ); std::deque pointList; pointList.push_back( aStartPoint ); pointList.push_back( diagonalPointA ); pointList.push_back( aEndPoint ); pointList.push_back( diagonalPointB ); pointList.push_back( aStartPoint ); DrawPolyline( pointList ); } } void OPENGL_GAL::DrawSegmentChain( const std::vector& aPointList, double aWidth ) { drawSegmentChain( [&]( int idx ) { return aPointList[idx]; }, aPointList.size(), aWidth ); } void OPENGL_GAL::DrawSegmentChain( const SHAPE_LINE_CHAIN& aLineChain, double aWidth ) { auto numPoints = aLineChain.PointCount(); if( aLineChain.IsClosed() ) numPoints += 1; drawSegmentChain( [&]( int idx ) { return aLineChain.CPoint( idx ); }, numPoints, aWidth ); } void OPENGL_GAL::DrawPolyline( const std::deque& aPointList ) { drawPolyline( [&]( int idx ) { return aPointList[idx]; }, aPointList.size() ); } void OPENGL_GAL::DrawPolyline( const std::vector& aPointList ) { drawPolyline( [&]( int idx ) { return aPointList[idx]; }, aPointList.size() ); } void OPENGL_GAL::DrawPolyline( const VECTOR2D aPointList[], int aListSize ) { drawPolyline( [&]( int idx ) { return aPointList[idx]; }, aListSize ); } void OPENGL_GAL::DrawPolyline( const SHAPE_LINE_CHAIN& aLineChain ) { auto numPoints = aLineChain.PointCount(); if( aLineChain.IsClosed() ) numPoints += 1; drawPolyline( [&]( int idx ) { return aLineChain.CPoint( idx ); }, numPoints ); } void OPENGL_GAL::DrawPolylines( const std::vector>& aPointList ) { int lineQuadCount = 0; for( const std::vector& points : aPointList ) lineQuadCount += points.size() - 1; reserveLineQuads( lineQuadCount ); for( const std::vector& points : aPointList ) { drawPolyline( [&]( int idx ) { return points[idx]; }, points.size(), false ); } } void OPENGL_GAL::DrawPolygon( const std::deque& aPointList ) { wxCHECK( aPointList.size() >= 2, /* void */ ); auto points = std::unique_ptr( new GLdouble[3 * aPointList.size()] ); GLdouble* ptr = points.get(); for( const VECTOR2D& p : aPointList ) { *ptr++ = p.x; *ptr++ = p.y; *ptr++ = m_layerDepth; } drawPolygon( points.get(), aPointList.size() ); } void OPENGL_GAL::DrawPolygon( const VECTOR2D aPointList[], int aListSize ) { wxCHECK( aListSize >= 2, /* void */ ); auto points = std::unique_ptr( new GLdouble[3 * aListSize] ); GLdouble* target = points.get(); const VECTOR2D* src = aPointList; for( int i = 0; i < aListSize; ++i ) { *target++ = src->x; *target++ = src->y; *target++ = m_layerDepth; ++src; } drawPolygon( points.get(), aListSize ); } void OPENGL_GAL::drawTriangulatedPolyset( const SHAPE_POLY_SET& aPolySet, bool aStrokeTriangulation ) { m_currentManager->Shader( SHADER_NONE ); m_currentManager->Color( m_fillColor.r, m_fillColor.g, m_fillColor.b, m_fillColor.a ); if( m_isFillEnabled ) { int totalTriangleCount = 0; for( unsigned int j = 0; j < aPolySet.TriangulatedPolyCount(); ++j ) { auto triPoly = aPolySet.TriangulatedPolygon( j ); totalTriangleCount += triPoly->GetTriangleCount(); } m_currentManager->Reserve( 3 * totalTriangleCount ); for( unsigned int j = 0; j < aPolySet.TriangulatedPolyCount(); ++j ) { auto triPoly = aPolySet.TriangulatedPolygon( j ); for( size_t i = 0; i < triPoly->GetTriangleCount(); i++ ) { VECTOR2I a, b, c; triPoly->GetTriangle( i, a, b, c ); m_currentManager->Vertex( a.x, a.y, m_layerDepth ); m_currentManager->Vertex( b.x, b.y, m_layerDepth ); m_currentManager->Vertex( c.x, c.y, m_layerDepth ); } } } if( m_isStrokeEnabled ) { for( int j = 0; j < aPolySet.OutlineCount(); ++j ) { const auto& poly = aPolySet.Polygon( j ); for( const auto& lc : poly ) { DrawPolyline( lc ); } } } if( ADVANCED_CFG::GetCfg().m_DrawTriangulationOutlines ) { aStrokeTriangulation = true; SetStrokeColor( COLOR4D( 0.0, 1.0, 0.2, 1.0 ) ); } if( aStrokeTriangulation ) { COLOR4D oldStrokeColor = m_strokeColor; double oldLayerDepth = m_layerDepth; SetLayerDepth( m_layerDepth - 1 ); for( unsigned int j = 0; j < aPolySet.TriangulatedPolyCount(); ++j ) { auto triPoly = aPolySet.TriangulatedPolygon( j ); for( size_t i = 0; i < triPoly->GetTriangleCount(); i++ ) { VECTOR2I a, b, c; triPoly->GetTriangle( i, a, b, c ); DrawLine( a, b ); DrawLine( b, c ); DrawLine( c, a ); } } SetStrokeColor( oldStrokeColor ); SetLayerDepth( oldLayerDepth ); } } void OPENGL_GAL::DrawPolygon( const SHAPE_POLY_SET& aPolySet, bool aStrokeTriangulation ) { if( aPolySet.IsTriangulationUpToDate() ) { drawTriangulatedPolyset( aPolySet, aStrokeTriangulation ); return; } for( int j = 0; j < aPolySet.OutlineCount(); ++j ) { const SHAPE_LINE_CHAIN& outline = aPolySet.COutline( j ); DrawPolygon( outline ); } } void OPENGL_GAL::DrawPolygon( const SHAPE_LINE_CHAIN& aPolygon ) { wxCHECK( aPolygon.PointCount() >= 2, /* void */ ); const int pointCount = aPolygon.SegmentCount() + 1; std::unique_ptr points( new GLdouble[3 * pointCount] ); GLdouble* ptr = points.get(); for( int i = 0; i < pointCount; ++i ) { const VECTOR2I& p = aPolygon.CPoint( i ); *ptr++ = p.x; *ptr++ = p.y; *ptr++ = m_layerDepth; } drawPolygon( points.get(), pointCount ); } void OPENGL_GAL::DrawCurve( const VECTOR2D& aStartPoint, const VECTOR2D& aControlPointA, const VECTOR2D& aControlPointB, const VECTOR2D& aEndPoint, double aFilterValue ) { std::vector output; std::vector pointCtrl; pointCtrl.push_back( aStartPoint ); pointCtrl.push_back( aControlPointA ); pointCtrl.push_back( aControlPointB ); pointCtrl.push_back( aEndPoint ); BEZIER_POLY converter( pointCtrl ); converter.GetPoly( output, aFilterValue ); DrawPolyline( &output[0], output.size() ); } void OPENGL_GAL::DrawBitmap( const BITMAP_BASE& aBitmap, double alphaBlend ) { GLfloat alpha = std::clamp( alphaBlend, 0.0, 1.0 ); // We have to calculate the pixel size in users units to draw the image. // m_worldUnitLength is a factor used for converting IU to inches double scale = 1.0 / ( aBitmap.GetPPI() * m_worldUnitLength ); double w = (double) aBitmap.GetSizePixels().x * scale; double h = (double) aBitmap.GetSizePixels().y * scale; auto xform = m_currentManager->GetTransformation(); glm::vec4 v0 = xform * glm::vec4( -w / 2, -h / 2, 0.0, 0.0 ); glm::vec4 v1 = xform * glm::vec4( w / 2, h / 2, 0.0, 0.0 ); glm::vec4 trans = xform[3]; auto texture_id = m_bitmapCache->RequestBitmap( &aBitmap ); if( !glIsTexture( texture_id ) ) // ensure the bitmap texture is still valid return; glDisable( GL_DEPTH_TEST ); glMatrixMode( GL_TEXTURE ); glPushMatrix(); glTranslated( 0.5, 0.5, 0.5 ); glRotated( aBitmap.Rotation().AsDegrees(), 0, 0, 1 ); glTranslated( -0.5, -0.5, -0.5 ); glMatrixMode( GL_MODELVIEW ); glPushMatrix(); glTranslated( trans.x, trans.y, trans.z ); glEnable( GL_TEXTURE_2D ); glActiveTexture( GL_TEXTURE0 ); glBindTexture( GL_TEXTURE_2D, texture_id ); float texStartX = aBitmap.IsMirroredX() ? 1.0 : 0.0; float texEndX = aBitmap.IsMirroredX() ? 0.0 : 1.0; float texStartY = aBitmap.IsMirroredY() ? 1.0 : 0.0; float texEndY = aBitmap.IsMirroredY() ? 0.0 : 1.0; glBegin( GL_QUADS ); glColor4f( 1.0, 1.0, 1.0, alpha ); glTexCoord2f( texStartX, texStartY ); glVertex3f( v0.x, v0.y, m_layerDepth ); glColor4f( 1.0, 1.0, 1.0, alpha ); glTexCoord2f( texEndX, texStartY); glVertex3f( v1.x, v0.y, m_layerDepth ); glColor4f( 1.0, 1.0, 1.0, alpha ); glTexCoord2f( texEndX, texEndY); glVertex3f( v1.x, v1.y, m_layerDepth ); glColor4f( 1.0, 1.0, 1.0, alpha ); glTexCoord2f( texStartX, texEndY); glVertex3f( v0.x, v1.y, m_layerDepth ); glEnd(); glBindTexture( GL_TEXTURE_2D, 0 ); #ifdef DISABLE_BITMAP_CACHE glDeleteTextures( 1, &texture_id ); #endif glPopMatrix(); glMatrixMode( GL_TEXTURE ); glPopMatrix(); glMatrixMode( GL_MODELVIEW ); glEnable( GL_DEPTH_TEST ); } void OPENGL_GAL::BitmapText( const wxString& aText, const VECTOR2I& aPosition, const EDA_ANGLE& aAngle ) { // Fallback to generic impl (which uses the stroke font) on cases we don't handle if( IsTextMirrored() || aText.Contains( wxT( "^{" ) ) || aText.Contains( wxT( "_{" ) ) || aText.Contains( wxT( "\n" ) ) ) { return GAL::BitmapText( aText, aPosition, aAngle ); } const UTF8 text( aText ); VECTOR2D textSize; float commonOffset; std::tie( textSize, commonOffset ) = computeBitmapTextSize( text ); const double SCALE = 1.4 * GetGlyphSize().y / textSize.y; double overbarHeight = textSize.y; Save(); m_currentManager->Color( m_strokeColor.r, m_strokeColor.g, m_strokeColor.b, m_strokeColor.a ); m_currentManager->Translate( aPosition.x, aPosition.y, m_layerDepth ); m_currentManager->Rotate( aAngle.AsRadians(), 0.0f, 0.0f, -1.0f ); double sx = SCALE * ( m_globalFlipX ? -1.0 : 1.0 ); double sy = SCALE * ( m_globalFlipY ? -1.0 : 1.0 ); m_currentManager->Scale( sx, sy, 0 ); m_currentManager->Translate( 0, -commonOffset, 0 ); switch( GetHorizontalJustify() ) { case GR_TEXT_H_ALIGN_CENTER: Translate( VECTOR2D( -textSize.x / 2.0, 0 ) ); break; case GR_TEXT_H_ALIGN_RIGHT: //if( !IsTextMirrored() ) Translate( VECTOR2D( -textSize.x, 0 ) ); break; case GR_TEXT_H_ALIGN_LEFT: //if( IsTextMirrored() ) //Translate( VECTOR2D( -textSize.x, 0 ) ); break; } switch( GetVerticalJustify() ) { case GR_TEXT_V_ALIGN_TOP: break; case GR_TEXT_V_ALIGN_CENTER: Translate( VECTOR2D( 0, -textSize.y / 2.0 ) ); overbarHeight = 0; break; case GR_TEXT_V_ALIGN_BOTTOM: Translate( VECTOR2D( 0, -textSize.y ) ); overbarHeight = -textSize.y / 2.0; break; } int overbarLength = 0; int overbarDepth = -1; int braceNesting = 0; auto iterateString = [&]( std::function overbarFn, std::function bitmapCharFn ) { for( UTF8::uni_iter chIt = text.ubegin(), end = text.uend(); chIt < end; ++chIt ) { wxASSERT_MSG( *chIt != '\n' && *chIt != '\r', "No support for multiline bitmap text yet" ); if( *chIt == '~' && overbarDepth == -1 ) { UTF8::uni_iter lookahead = chIt; if( ++lookahead != end && *lookahead == '{' ) { chIt = lookahead; overbarDepth = braceNesting; braceNesting++; continue; } } else if( *chIt == '{' ) { braceNesting++; } else if( *chIt == '}' ) { if( braceNesting > 0 ) braceNesting--; if( braceNesting == overbarDepth ) { overbarFn( overbarLength, overbarHeight ); overbarLength = 0; overbarDepth = -1; continue; } } if( overbarDepth != -1 ) overbarLength += bitmapCharFn( *chIt ); else bitmapCharFn( *chIt ); } }; // First, calculate the amount of characters and overbars to reserve int charsCount = 0; int overbarsCount = 0; iterateString( [&overbarsCount]( int aOverbarLength, int aOverbarHeight ) { overbarsCount++; }, [&charsCount]( unsigned long aChar ) -> int { if( aChar != ' ' ) charsCount++; return 0; } ); m_currentManager->Reserve( 6 * charsCount + 6 * overbarsCount ); // Now reset the state and actually draw the characters and overbars overbarLength = 0; overbarDepth = -1; braceNesting = 0; iterateString( [&]( int aOverbarLength, int aOverbarHeight ) { drawBitmapOverbar( aOverbarLength, aOverbarHeight, false ); }, [&]( unsigned long aChar ) -> int { return drawBitmapChar( aChar, false ); } ); // Handle the case when overbar is active till the end of the drawn text m_currentManager->Translate( 0, commonOffset, 0 ); if( overbarDepth != -1 && overbarLength > 0 ) drawBitmapOverbar( overbarLength, overbarHeight ); Restore(); } void OPENGL_GAL::DrawGrid() { SetTarget( TARGET_NONCACHED ); m_compositor->SetBuffer( m_mainBuffer ); m_nonCachedManager->EnableDepthTest( false ); // sub-pixel lines all render the same float minorLineWidth = std::fmax( 1.0f, m_gridLineWidth ) * getWorldPixelSize() / GetScaleFactor(); float majorLineWidth = minorLineWidth * 2.0f; // Draw the axis and grid // For the drawing the start points, end points and increments have // to be calculated in world coordinates VECTOR2D worldStartPoint = m_screenWorldMatrix * VECTOR2D( 0.0, 0.0 ); VECTOR2D worldEndPoint = m_screenWorldMatrix * VECTOR2D( m_screenSize ); // Draw axes if desired if( m_axesEnabled ) { SetLineWidth( minorLineWidth ); SetStrokeColor( m_axesColor ); DrawLine( VECTOR2D( worldStartPoint.x, 0 ), VECTOR2D( worldEndPoint.x, 0 ) ); DrawLine( VECTOR2D( 0, worldStartPoint.y ), VECTOR2D( 0, worldEndPoint.y ) ); } // force flush m_nonCachedManager->EndDrawing(); if( !m_gridVisibility || m_gridSize.x == 0 || m_gridSize.y == 0 ) return; VECTOR2D gridScreenSize = GetVisibleGridSize(); // Compute grid starting and ending indexes to draw grid points on the // visible screen area // Note: later any point coordinate will be offset by m_gridOrigin int gridStartX = KiROUND( ( worldStartPoint.x - m_gridOrigin.x ) / gridScreenSize.x ); int gridEndX = KiROUND( ( worldEndPoint.x - m_gridOrigin.x ) / gridScreenSize.x ); int gridStartY = KiROUND( ( worldStartPoint.y - m_gridOrigin.y ) / gridScreenSize.y ); int gridEndY = KiROUND( ( worldEndPoint.y - m_gridOrigin.y ) / gridScreenSize.y ); // Ensure start coordinate > end coordinate SWAP( gridStartX, >, gridEndX ); SWAP( gridStartY, >, gridEndY ); // Ensure the grid fills the screen --gridStartX; ++gridEndX; --gridStartY; ++gridEndY; glDisable( GL_DEPTH_TEST ); glDisable( GL_TEXTURE_2D ); if( m_gridStyle == GRID_STYLE::DOTS ) { glEnable( GL_STENCIL_TEST ); glStencilFunc( GL_ALWAYS, 1, 1 ); glStencilOp( GL_KEEP, GL_KEEP, GL_INCR ); glColor4d( 0.0, 0.0, 0.0, 0.0 ); SetStrokeColor( COLOR4D( 0.0, 0.0, 0.0, 0.0 ) ); } else { glColor4d( m_gridColor.r, m_gridColor.g, m_gridColor.b, m_gridColor.a ); SetStrokeColor( m_gridColor ); } if( m_gridStyle == GRID_STYLE::SMALL_CROSS ) { // Vertical positions for( int j = gridStartY; j <= gridEndY; j++ ) { bool tickY = ( j % m_gridTick == 0 ); const double posY = j * gridScreenSize.y + m_gridOrigin.y; // Horizontal positions for( int i = gridStartX; i <= gridEndX; i++ ) { bool tickX = ( i % m_gridTick == 0 ); SetLineWidth( ( ( tickX && tickY ) ? majorLineWidth : minorLineWidth ) ); auto lineLen = 2.0 * GetLineWidth(); auto posX = i * gridScreenSize.x + m_gridOrigin.x; DrawLine( VECTOR2D( posX - lineLen, posY ), VECTOR2D( posX + lineLen, posY ) ); DrawLine( VECTOR2D( posX, posY - lineLen ), VECTOR2D( posX, posY + lineLen ) ); } } m_nonCachedManager->EndDrawing(); } else { // Vertical lines for( int j = gridStartY; j <= gridEndY; j++ ) { const double y = j * gridScreenSize.y + m_gridOrigin.y; // If axes are drawn, skip the lines that would cover them if( m_axesEnabled && y == 0.0 ) continue; SetLineWidth( ( j % m_gridTick == 0 ) ? majorLineWidth : minorLineWidth ); VECTOR2D a( gridStartX * gridScreenSize.x + m_gridOrigin.x, y ); VECTOR2D b( gridEndX * gridScreenSize.x + m_gridOrigin.x, y ); DrawLine( a, b ); } m_nonCachedManager->EndDrawing(); if( m_gridStyle == GRID_STYLE::DOTS ) { glStencilFunc( GL_NOTEQUAL, 0, 1 ); glColor4d( m_gridColor.r, m_gridColor.g, m_gridColor.b, m_gridColor.a ); SetStrokeColor( m_gridColor ); } // Horizontal lines for( int i = gridStartX; i <= gridEndX; i++ ) { const double x = i * gridScreenSize.x + m_gridOrigin.x; // If axes are drawn, skip the lines that would cover them if( m_axesEnabled && x == 0.0 ) continue; SetLineWidth( ( i % m_gridTick == 0 ) ? majorLineWidth : minorLineWidth ); VECTOR2D a( x, gridStartY * gridScreenSize.y + m_gridOrigin.y ); VECTOR2D b( x, gridEndY * gridScreenSize.y + m_gridOrigin.y ); DrawLine( a, b ); } m_nonCachedManager->EndDrawing(); if( m_gridStyle == GRID_STYLE::DOTS ) glDisable( GL_STENCIL_TEST ); } glEnable( GL_DEPTH_TEST ); glEnable( GL_TEXTURE_2D ); } void OPENGL_GAL::ResizeScreen( int aWidth, int aHeight ) { m_screenSize = VECTOR2I( aWidth, aHeight ); // Resize framebuffers const float scaleFactor = GetScaleFactor(); m_compositor->Resize( aWidth * scaleFactor, aHeight * scaleFactor ); m_isFramebufferInitialized = false; wxGLCanvas::SetSize( aWidth, aHeight ); } bool OPENGL_GAL::Show( bool aShow ) { bool s = wxGLCanvas::Show( aShow ); if( aShow ) wxGLCanvas::Raise(); return s; } void OPENGL_GAL::Flush() { glFlush(); } void OPENGL_GAL::ClearScreen() { // Clear screen m_compositor->SetBuffer( OPENGL_COMPOSITOR::DIRECT_RENDERING ); // NOTE: Black used here instead of m_clearColor; it will be composited later glClearColor( 0, 0, 0, 1 ); glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT ); } void OPENGL_GAL::Transform( const MATRIX3x3D& aTransformation ) { GLdouble matrixData[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 }; matrixData[0] = aTransformation.m_data[0][0]; matrixData[1] = aTransformation.m_data[1][0]; matrixData[2] = aTransformation.m_data[2][0]; matrixData[4] = aTransformation.m_data[0][1]; matrixData[5] = aTransformation.m_data[1][1]; matrixData[6] = aTransformation.m_data[2][1]; matrixData[12] = aTransformation.m_data[0][2]; matrixData[13] = aTransformation.m_data[1][2]; matrixData[14] = aTransformation.m_data[2][2]; glMultMatrixd( matrixData ); } void OPENGL_GAL::Rotate( double aAngle ) { m_currentManager->Rotate( aAngle, 0.0f, 0.0f, 1.0f ); } void OPENGL_GAL::Translate( const VECTOR2D& aVector ) { m_currentManager->Translate( aVector.x, aVector.y, 0.0f ); } void OPENGL_GAL::Scale( const VECTOR2D& aScale ) { m_currentManager->Scale( aScale.x, aScale.y, 0.0f ); } void OPENGL_GAL::Save() { m_currentManager->PushMatrix(); } void OPENGL_GAL::Restore() { m_currentManager->PopMatrix(); } int OPENGL_GAL::BeginGroup() { m_isGrouping = true; std::shared_ptr newItem = std::make_shared( *m_cachedManager ); int groupNumber = getNewGroupNumber(); m_groups.insert( std::make_pair( groupNumber, newItem ) ); return groupNumber; } void OPENGL_GAL::EndGroup() { m_cachedManager->FinishItem(); m_isGrouping = false; } void OPENGL_GAL::DrawGroup( int aGroupNumber ) { auto group = m_groups.find( aGroupNumber ); if( group != m_groups.end() ) m_cachedManager->DrawItem( *group->second ); } void OPENGL_GAL::ChangeGroupColor( int aGroupNumber, const COLOR4D& aNewColor ) { auto group = m_groups.find( aGroupNumber ); if( group != m_groups.end() ) m_cachedManager->ChangeItemColor( *group->second, aNewColor ); } void OPENGL_GAL::ChangeGroupDepth( int aGroupNumber, int aDepth ) { auto group = m_groups.find( aGroupNumber ); if( group != m_groups.end() ) m_cachedManager->ChangeItemDepth( *group->second, aDepth ); } void OPENGL_GAL::DeleteGroup( int aGroupNumber ) { // Frees memory in the container as well m_groups.erase( aGroupNumber ); } void OPENGL_GAL::ClearCache() { m_bitmapCache = std::make_unique(); m_groups.clear(); if( m_isInitialized ) m_cachedManager->Clear(); } void OPENGL_GAL::SetTarget( RENDER_TARGET aTarget ) { switch( aTarget ) { default: case TARGET_CACHED: m_currentManager = m_cachedManager; break; case TARGET_NONCACHED: m_currentManager = m_nonCachedManager; break; case TARGET_OVERLAY: m_currentManager = m_overlayManager; break; case TARGET_TEMP: m_currentManager = m_tempManager; break; } m_currentTarget = aTarget; } RENDER_TARGET OPENGL_GAL::GetTarget() const { return m_currentTarget; } void OPENGL_GAL::ClearTarget( RENDER_TARGET aTarget ) { // Save the current state unsigned int oldTarget = m_compositor->GetBuffer(); switch( aTarget ) { // Cached and noncached items are rendered to the same buffer default: case TARGET_CACHED: case TARGET_NONCACHED: m_compositor->SetBuffer( m_mainBuffer ); break; case TARGET_TEMP: if( m_tempBuffer ) m_compositor->SetBuffer( m_tempBuffer ); break; case TARGET_OVERLAY: if( m_overlayBuffer ) m_compositor->SetBuffer( m_overlayBuffer ); break; } if( aTarget != TARGET_OVERLAY ) m_compositor->ClearBuffer( m_clearColor ); else if( m_overlayBuffer ) m_compositor->ClearBuffer( COLOR4D::BLACK ); // Restore the previous state m_compositor->SetBuffer( oldTarget ); } bool OPENGL_GAL::HasTarget( RENDER_TARGET aTarget ) { switch( aTarget ) { default: case TARGET_CACHED: case TARGET_NONCACHED: return true; case TARGET_OVERLAY: return ( m_overlayBuffer != 0 ); case TARGET_TEMP: return ( m_tempBuffer != 0 ); } } void OPENGL_GAL::StartDiffLayer() { m_currentManager->EndDrawing(); if( m_tempBuffer ) { SetTarget( TARGET_TEMP ); ClearTarget( TARGET_TEMP ); } } void OPENGL_GAL::EndDiffLayer() { if( m_tempBuffer ) { glBlendEquation( GL_MAX ); m_currentManager->EndDrawing(); glBlendEquation( GL_FUNC_ADD ); m_compositor->DrawBuffer( m_tempBuffer, m_mainBuffer ); } else { // Fall back to imperfect alpha blending on single buffer glBlendFunc( GL_SRC_ALPHA, GL_ONE ); m_currentManager->EndDrawing(); glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA ); } } bool OPENGL_GAL::SetNativeCursorStyle( KICURSOR aCursor ) { // Store the current cursor type and get the wxCursor for it if( !GAL::SetNativeCursorStyle( aCursor ) ) return false; m_currentwxCursor = CURSOR_STORE::GetCursor( m_currentNativeCursor ); // Update the cursor in the wx control HIDPI_GL_CANVAS::SetCursor( m_currentwxCursor ); return true; } void OPENGL_GAL::onSetNativeCursor( wxSetCursorEvent& aEvent ) { aEvent.SetCursor( m_currentwxCursor ); } void OPENGL_GAL::DrawCursor( const VECTOR2D& aCursorPosition ) { // Now we should only store the position of the mouse cursor // The real drawing routines are in blitCursor() //VECTOR2D screenCursor = m_worldScreenMatrix * aCursorPosition; //m_cursorPosition = m_screenWorldMatrix * VECTOR2D( screenCursor.x, screenCursor.y ); m_cursorPosition = aCursorPosition; } void OPENGL_GAL::drawLineQuad( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint, const bool aReserve ) { /* Helper drawing: ____--- v3 ^ * ____---- ... \ \ * ____---- ... \ end \ * v1 ____---- ... ____---- \ width * ---- ...___---- \ \ * \ ___...-- \ v * \ ____----... ____---- v2 * ---- ... ____---- * start \ ... ____---- * \... ____---- * ---- * v0 * dots mark triangles' hypotenuses */ auto v1 = m_currentManager->GetTransformation() * glm::vec4( aStartPoint.x, aStartPoint.y, 0.0, 0.0 ); auto v2 = m_currentManager->GetTransformation() * glm::vec4( aEndPoint.x, aEndPoint.y, 0.0, 0.0 ); VECTOR2D vs( v2.x - v1.x, v2.y - v1.y ); if( aReserve ) reserveLineQuads( 1 ); // Line width is maintained by the vertex shader m_currentManager->Shader( SHADER_LINE_A, m_lineWidth, vs.x, vs.y ); m_currentManager->Vertex( aStartPoint, m_layerDepth ); m_currentManager->Shader( SHADER_LINE_B, m_lineWidth, vs.x, vs.y ); m_currentManager->Vertex( aStartPoint, m_layerDepth ); m_currentManager->Shader( SHADER_LINE_C, m_lineWidth, vs.x, vs.y ); m_currentManager->Vertex( aEndPoint, m_layerDepth ); m_currentManager->Shader( SHADER_LINE_D, m_lineWidth, vs.x, vs.y ); m_currentManager->Vertex( aEndPoint, m_layerDepth ); m_currentManager->Shader( SHADER_LINE_E, m_lineWidth, vs.x, vs.y ); m_currentManager->Vertex( aEndPoint, m_layerDepth ); m_currentManager->Shader( SHADER_LINE_F, m_lineWidth, vs.x, vs.y ); m_currentManager->Vertex( aStartPoint, m_layerDepth ); } void OPENGL_GAL::reserveLineQuads( const int aLineCount ) { m_currentManager->Reserve( 6 * aLineCount ); } void OPENGL_GAL::drawSemiCircle( const VECTOR2D& aCenterPoint, double aRadius, double aAngle ) { if( m_isFillEnabled ) { m_currentManager->Color( m_fillColor.r, m_fillColor.g, m_fillColor.b, m_fillColor.a ); drawFilledSemiCircle( aCenterPoint, aRadius, aAngle ); } if( m_isStrokeEnabled ) { m_currentManager->Color( m_strokeColor.r, m_strokeColor.g, m_strokeColor.b, m_strokeColor.a ); drawStrokedSemiCircle( aCenterPoint, aRadius, aAngle ); } } void OPENGL_GAL::drawFilledSemiCircle( const VECTOR2D& aCenterPoint, double aRadius, double aAngle ) { Save(); m_currentManager->Reserve( 3 ); m_currentManager->Translate( aCenterPoint.x, aCenterPoint.y, 0.0f ); m_currentManager->Rotate( aAngle, 0.0f, 0.0f, 1.0f ); /* Draw a triangle that contains the semicircle, then shade it to leave only * the semicircle. Parameters given to Shader() are indices of the triangle's vertices * (if you want to understand more, check the vertex shader source [shader.vert]). * Shader uses these coordinates to determine if fragments are inside the semicircle or not. * v2 * /\ * /__\ * v0 //__\\ v1 */ m_currentManager->Shader( SHADER_FILLED_CIRCLE, 4.0f ); m_currentManager->Vertex( -aRadius * 3.0f / sqrt( 3.0f ), 0.0f, m_layerDepth ); // v0 m_currentManager->Shader( SHADER_FILLED_CIRCLE, 5.0f ); m_currentManager->Vertex( aRadius * 3.0f / sqrt( 3.0f ), 0.0f, m_layerDepth ); // v1 m_currentManager->Shader( SHADER_FILLED_CIRCLE, 6.0f ); m_currentManager->Vertex( 0.0f, aRadius * 2.0f, m_layerDepth ); // v2 Restore(); } void OPENGL_GAL::drawStrokedSemiCircle( const VECTOR2D& aCenterPoint, double aRadius, double aAngle, bool aReserve ) { double outerRadius = aRadius + ( m_lineWidth / 2 ); Save(); if( aReserve ) m_currentManager->Reserve( 3 ); m_currentManager->Translate( aCenterPoint.x, aCenterPoint.y, 0.0f ); m_currentManager->Rotate( aAngle, 0.0f, 0.0f, 1.0f ); /* Draw a triangle that contains the semicircle, then shade it to leave only * the semicircle. Parameters given to Shader() are indices of the triangle's vertices * (if you want to understand more, check the vertex shader source [shader.vert]), the * radius and the line width. Shader uses these coordinates to determine if fragments are * inside the semicircle or not. * v2 * /\ * /__\ * v0 //__\\ v1 */ m_currentManager->Shader( SHADER_STROKED_CIRCLE, 4.0f, aRadius, m_lineWidth ); m_currentManager->Vertex( -outerRadius * 3.0f / sqrt( 3.0f ), 0.0f, m_layerDepth ); // v0 m_currentManager->Shader( SHADER_STROKED_CIRCLE, 5.0f, aRadius, m_lineWidth ); m_currentManager->Vertex( outerRadius * 3.0f / sqrt( 3.0f ), 0.0f, m_layerDepth ); // v1 m_currentManager->Shader( SHADER_STROKED_CIRCLE, 6.0f, aRadius, m_lineWidth ); m_currentManager->Vertex( 0.0f, outerRadius * 2.0f, m_layerDepth ); // v2 Restore(); } void OPENGL_GAL::drawPolygon( GLdouble* aPoints, int aPointCount ) { if( m_isFillEnabled ) { m_currentManager->Shader( SHADER_NONE ); m_currentManager->Color( m_fillColor.r, m_fillColor.g, m_fillColor.b, m_fillColor.a ); // Any non convex polygon needs to be tesselated // for this purpose the GLU standard functions are used TessParams params = { m_currentManager, m_tessIntersects }; gluTessBeginPolygon( m_tesselator, ¶ms ); gluTessBeginContour( m_tesselator ); GLdouble* point = aPoints; for( int i = 0; i < aPointCount; ++i ) { gluTessVertex( m_tesselator, point, point ); point += 3; // 3 coordinates } gluTessEndContour( m_tesselator ); gluTessEndPolygon( m_tesselator ); // Free allocated intersecting points m_tessIntersects.clear(); } if( m_isStrokeEnabled ) { drawPolyline( [&]( int idx ) { return VECTOR2D( aPoints[idx * 3], aPoints[idx * 3 + 1] ); }, aPointCount ); } } void OPENGL_GAL::drawPolyline( const std::function& aPointGetter, int aPointCount, bool aReserve ) { wxCHECK( aPointCount > 0, /* return */ ); m_currentManager->Color( m_strokeColor.r, m_strokeColor.g, m_strokeColor.b, m_strokeColor.a ); if( aPointCount == 1 ) { drawLineQuad( aPointGetter( 0 ), aPointGetter( 0 ), aReserve ); return; } if( aReserve ) { reserveLineQuads( aPointCount - 1 ); } for( int i = 1; i < aPointCount; ++i ) { auto start = aPointGetter( i - 1 ); auto end = aPointGetter( i ); drawLineQuad( start, end, false ); } } void OPENGL_GAL::drawSegmentChain( const std::function& aPointGetter, int aPointCount, double aWidth, bool aReserve ) { wxCHECK( aPointCount >= 2, /* return */ ); m_currentManager->Color( m_strokeColor.r, m_strokeColor.g, m_strokeColor.b, m_strokeColor.a ); int vertices = 0; for( int i = 1; i < aPointCount; ++i ) { auto start = aPointGetter( i - 1 ); auto end = aPointGetter( i ); VECTOR2D startEndVector = end - start; double lineLength = startEndVector.EuclideanNorm(); float startx = start.x; float starty = start.y; float endx = start.x + lineLength; float endy = start.y + lineLength; // Be careful about floating point rounding. As we draw segments in larger and larger // coordinates, the shader (which uses floats) will lose precision and stop drawing small // segments. In this case, we need to draw a circle for the minimal segment. if( startx == endx || starty == endy ) { vertices += 3; // One circle continue; } if( m_isFillEnabled || aWidth == 1.0 ) { vertices += 6; // One line } else { vertices += 6 + 6 + 3 + 3; // Two lines and two half-circles } } m_currentManager->Reserve( vertices ); for( int i = 1; i < aPointCount; ++i ) { auto start = aPointGetter( i - 1 ); auto end = aPointGetter( i ); drawSegment( start, end, aWidth, false ); } } int OPENGL_GAL::drawBitmapChar( unsigned long aChar, bool aReserve ) { const float TEX_X = font_image.width; const float TEX_Y = font_image.height; // handle space if( aChar == ' ' ) { const FONT_GLYPH_TYPE* g = LookupGlyph( 'x' ); wxCHECK( g, 0 ); // Match stroke font as well as possible double spaceWidth = g->advance * 0.74; Translate( VECTOR2D( spaceWidth, 0 ) ); return KiROUND( spaceWidth ); } const FONT_GLYPH_TYPE* glyph = LookupGlyph( aChar ); // If the glyph is not found (happens for many esoteric unicode chars) // shows a '?' instead. if( !glyph ) glyph = LookupGlyph( '?' ); if( !glyph ) // Should not happen. return 0; const float X = glyph->atlas_x + font_information.smooth_pixels; const float Y = glyph->atlas_y + font_information.smooth_pixels; const float XOFF = glyph->minx; // adjust for height rounding const float round_adjust = ( glyph->maxy - glyph->miny ) - float( glyph->atlas_h - font_information.smooth_pixels * 2 ); const float top_adjust = font_information.max_y - glyph->maxy; const float YOFF = round_adjust + top_adjust; const float W = glyph->atlas_w - font_information.smooth_pixels * 2; const float H = glyph->atlas_h - font_information.smooth_pixels * 2; const float B = 0; if( aReserve ) m_currentManager->Reserve( 6 ); Translate( VECTOR2D( XOFF, YOFF ) ); /* Glyph: * v0 v1 * +--+ * | /| * |/ | * +--+ * v2 v3 */ m_currentManager->Shader( SHADER_FONT, X / TEX_X, ( Y + H ) / TEX_Y ); m_currentManager->Vertex( -B, -B, 0 ); // v0 m_currentManager->Shader( SHADER_FONT, ( X + W ) / TEX_X, ( Y + H ) / TEX_Y ); m_currentManager->Vertex( W + B, -B, 0 ); // v1 m_currentManager->Shader( SHADER_FONT, X / TEX_X, Y / TEX_Y ); m_currentManager->Vertex( -B, H + B, 0 ); // v2 m_currentManager->Shader( SHADER_FONT, ( X + W ) / TEX_X, ( Y + H ) / TEX_Y ); m_currentManager->Vertex( W + B, -B, 0 ); // v1 m_currentManager->Shader( SHADER_FONT, X / TEX_X, Y / TEX_Y ); m_currentManager->Vertex( -B, H + B, 0 ); // v2 m_currentManager->Shader( SHADER_FONT, ( X + W ) / TEX_X, Y / TEX_Y ); m_currentManager->Vertex( W + B, H + B, 0 ); // v3 Translate( VECTOR2D( -XOFF + glyph->advance, -YOFF ) ); return glyph->advance; } void OPENGL_GAL::drawBitmapOverbar( double aLength, double aHeight, bool aReserve ) { // To draw an overbar, simply draw an overbar const FONT_GLYPH_TYPE* glyph = LookupGlyph( '_' ); wxCHECK( glyph, /* void */ ); const float H = glyph->maxy - glyph->miny; Save(); Translate( VECTOR2D( -aLength, -aHeight ) ); if( aReserve ) m_currentManager->Reserve( 6 ); m_currentManager->Color( m_strokeColor.r, m_strokeColor.g, m_strokeColor.b, m_strokeColor.a ); m_currentManager->Shader( 0 ); m_currentManager->Vertex( 0, 0, 0 ); // v0 m_currentManager->Vertex( aLength, 0, 0 ); // v1 m_currentManager->Vertex( 0, H, 0 ); // v2 m_currentManager->Vertex( aLength, 0, 0 ); // v1 m_currentManager->Vertex( 0, H, 0 ); // v2 m_currentManager->Vertex( aLength, H, 0 ); // v3 Restore(); } std::pair OPENGL_GAL::computeBitmapTextSize( const UTF8& aText ) const { static const FONT_GLYPH_TYPE* defaultGlyph = LookupGlyph( '(' ); // for strange chars VECTOR2D textSize( 0, 0 ); float commonOffset = std::numeric_limits::max(); float charHeight = font_information.max_y - defaultGlyph->miny; int overbarDepth = -1; int braceNesting = 0; for( UTF8::uni_iter chIt = aText.ubegin(), end = aText.uend(); chIt < end; ++chIt ) { if( *chIt == '~' && overbarDepth == -1 ) { UTF8::uni_iter lookahead = chIt; if( ++lookahead != end && *lookahead == '{' ) { chIt = lookahead; overbarDepth = braceNesting; braceNesting++; continue; } } else if( *chIt == '{' ) { braceNesting++; } else if( *chIt == '}' ) { if( braceNesting > 0 ) braceNesting--; if( braceNesting == overbarDepth ) { overbarDepth = -1; continue; } } const FONT_GLYPH_TYPE* glyph = LookupGlyph( *chIt ); if( !glyph // Not coded in font || *chIt == '-' || *chIt == '_' ) // Strange size of these 2 chars { glyph = defaultGlyph; } if( glyph ) textSize.x += glyph->advance; } textSize.y = std::max( textSize.y, charHeight ); commonOffset = std::min( font_information.max_y - defaultGlyph->maxy, commonOffset ); textSize.y -= commonOffset; return std::make_pair( textSize, commonOffset ); } void OPENGL_GAL::onPaint( wxPaintEvent& aEvent ) { PostPaint( aEvent ); } void OPENGL_GAL::skipMouseEvent( wxMouseEvent& aEvent ) { // Post the mouse event to the event listener registered in constructor, if any if( m_mouseListener ) wxPostEvent( m_mouseListener, aEvent ); } void OPENGL_GAL::blitCursor() { if( !IsCursorEnabled() ) return; m_compositor->SetBuffer( OPENGL_COMPOSITOR::DIRECT_RENDERING ); const int cursorSize = m_fullscreenCursor ? 8000 : 80; VECTOR2D cursorBegin = m_cursorPosition - cursorSize / ( 2 * m_worldScale ); VECTOR2D cursorEnd = m_cursorPosition + cursorSize / ( 2 * m_worldScale ); VECTOR2D cursorCenter = ( cursorBegin + cursorEnd ) / 2; const COLOR4D cColor = getCursorColor(); const COLOR4D color( cColor.r * cColor.a, cColor.g * cColor.a, cColor.b * cColor.a, 1.0 ); glActiveTexture( GL_TEXTURE0 ); glDisable( GL_TEXTURE_2D ); glLineWidth( 1.0 ); glColor4d( color.r, color.g, color.b, color.a ); glBegin( GL_LINES ); glVertex2d( cursorCenter.x, cursorBegin.y ); glVertex2d( cursorCenter.x, cursorEnd.y ); glVertex2d( cursorBegin.x, cursorCenter.y ); glVertex2d( cursorEnd.x, cursorCenter.y ); glEnd(); } unsigned int OPENGL_GAL::getNewGroupNumber() { wxASSERT_MSG( m_groups.size() < std::numeric_limits::max(), wxT( "There are no free slots to store a group" ) ); while( m_groups.find( m_groupCounter ) != m_groups.end() ) m_groupCounter++; return m_groupCounter++; } void OPENGL_GAL::init() { wxASSERT( IsShownOnScreen() ); wxASSERT_MSG( m_isContextLocked, "This should only be called from within a locked context." ); // Check correct initialization from the constructor if( m_tesselator == nullptr ) throw std::runtime_error( "Could not create the tesselator" ); GLenum err = glewInit(); if( GLEW_OK != err ) throw std::runtime_error( (const char*) glewGetErrorString( err ) ); // Check the OpenGL version (minimum 2.1 is required) if( !GLEW_VERSION_2_1 ) throw std::runtime_error( "OpenGL 2.1 or higher is required!" ); #if defined( __LINUX__ ) // calling enableGlDebug crashes opengl on some OS (OSX and some Windows) #ifdef DEBUG if( GLEW_ARB_debug_output ) enableGlDebug( true ); #endif #endif // Framebuffers have to be supported if( !GLEW_EXT_framebuffer_object ) throw std::runtime_error( "Framebuffer objects are not supported!" ); // Vertex buffer has to be supported if( !GLEW_ARB_vertex_buffer_object ) throw std::runtime_error( "Vertex buffer objects are not supported!" ); // Prepare shaders if( !m_shader->IsLinked() && !m_shader->LoadShaderFromStrings( SHADER_TYPE_VERTEX, BUILTIN_SHADERS::glsl_kicad_vert ) ) { throw std::runtime_error( "Cannot compile vertex shader!" ); } if( !m_shader->IsLinked() && !m_shader->LoadShaderFromStrings( SHADER_TYPE_FRAGMENT, BUILTIN_SHADERS::glsl_kicad_frag ) ) { throw std::runtime_error( "Cannot compile fragment shader!" ); } if( !m_shader->IsLinked() && !m_shader->Link() ) throw std::runtime_error( "Cannot link the shaders!" ); // Check if video card supports textures big enough to fit the font atlas int maxTextureSize; glGetIntegerv( GL_MAX_TEXTURE_SIZE, &maxTextureSize ); if( maxTextureSize < (int) font_image.width || maxTextureSize < (int) font_image.height ) { // TODO implement software texture scaling // for bitmap fonts and use a higher resolution texture? throw std::runtime_error( "Requested texture size is not supported" ); } m_swapInterval = GL_UTILS::SetSwapInterval( -1 ); m_cachedManager = new VERTEX_MANAGER( true ); m_nonCachedManager = new VERTEX_MANAGER( false ); m_overlayManager = new VERTEX_MANAGER( false ); m_tempManager = new VERTEX_MANAGER( false ); // Make VBOs use shaders m_cachedManager->SetShader( *m_shader ); m_nonCachedManager->SetShader( *m_shader ); m_overlayManager->SetShader( *m_shader ); m_tempManager->SetShader( *m_shader ); m_isInitialized = true; } // Callback functions for the tesselator. Compare Redbook Chapter 11. void CALLBACK VertexCallback( GLvoid* aVertexPtr, void* aData ) { GLdouble* vertex = static_cast( aVertexPtr ); OPENGL_GAL::TessParams* param = static_cast( aData ); VERTEX_MANAGER* vboManager = param->vboManager; assert( vboManager ); vboManager->Vertex( vertex[0], vertex[1], vertex[2] ); } void CALLBACK CombineCallback( GLdouble coords[3], GLdouble* vertex_data[4], GLfloat weight[4], GLdouble** dataOut, void* aData ) { GLdouble* vertex = new GLdouble[3]; OPENGL_GAL::TessParams* param = static_cast( aData ); // Save the pointer so we can delete it later // Note, we use the default_delete for an array because macOS // decides to bundle an ancient libc++ that mismatches the C++17 support of clang param->intersectPoints.emplace_back( vertex, std::default_delete() ); memcpy( vertex, coords, 3 * sizeof( GLdouble ) ); *dataOut = vertex; } void CALLBACK EdgeCallback( GLboolean aEdgeFlag ) { // This callback is needed to force GLU tesselator to use triangles only } void CALLBACK ErrorCallback( GLenum aErrorCode ) { //throw std::runtime_error( std::string( "Tessellation error: " ) + //std::string( (const char*) gluErrorString( aErrorCode ) ); } static void InitTesselatorCallbacks( GLUtesselator* aTesselator ) { gluTessCallback( aTesselator, GLU_TESS_VERTEX_DATA, (void( CALLBACK* )()) VertexCallback ); gluTessCallback( aTesselator, GLU_TESS_COMBINE_DATA, (void( CALLBACK* )()) CombineCallback ); gluTessCallback( aTesselator, GLU_TESS_EDGE_FLAG, (void( CALLBACK* )()) EdgeCallback ); gluTessCallback( aTesselator, GLU_TESS_ERROR, (void( CALLBACK* )()) ErrorCallback ); } void OPENGL_GAL::EnableDepthTest( bool aEnabled ) { m_cachedManager->EnableDepthTest( aEnabled ); m_nonCachedManager->EnableDepthTest( aEnabled ); m_overlayManager->EnableDepthTest( aEnabled ); } inline double round_to_half_pixel( double f, double r ) { return ( ceil( f / r ) - 0.5 ) * r; } void OPENGL_GAL::ComputeWorldScreenMatrix() { computeWorldScale(); auto pixelSize = m_worldScale; // we need -m_lookAtPoint == -k * pixelSize + 0.5 * pixelSize for OpenGL // meaning m_lookAtPoint = (k-0.5)*pixelSize with integer k m_lookAtPoint.x = round_to_half_pixel( m_lookAtPoint.x, pixelSize ); m_lookAtPoint.y = round_to_half_pixel( m_lookAtPoint.y, pixelSize ); GAL::ComputeWorldScreenMatrix(); } void OPENGL_GAL::DrawGlyph( const KIFONT::GLYPH& aGlyph, int aNth, int aTotal ) { if( aGlyph.IsStroke() ) { const auto& strokeGlyph = static_cast( aGlyph ); DrawPolylines( strokeGlyph ); } else if( aGlyph.IsOutline() ) { const auto& outlineGlyph = static_cast( aGlyph ); m_currentManager->Shader( SHADER_NONE ); m_currentManager->Color( m_fillColor ); outlineGlyph.Triangulate( [&]( const VECTOR2D& aPt1, const VECTOR2D& aPt2, const VECTOR2D& aPt3 ) { m_currentManager->Reserve( 3 ); m_currentManager->Vertex( aPt1.x, aPt1.y, m_layerDepth ); m_currentManager->Vertex( aPt2.x, aPt2.y, m_layerDepth ); m_currentManager->Vertex( aPt3.x, aPt3.y, m_layerDepth ); } ); } } void OPENGL_GAL::DrawGlyphs( const std::vector>& aGlyphs ) { if( aGlyphs.empty() ) return; bool allGlyphsAreStroke = true; bool allGlyphsAreOutline = true; for( const std::unique_ptr& glyph : aGlyphs ) { if( !glyph->IsStroke() ) { allGlyphsAreStroke = false; break; } } for( const std::unique_ptr& glyph : aGlyphs ) { if( !glyph->IsOutline() ) { allGlyphsAreOutline = false; break; } } if( allGlyphsAreStroke ) { // Optimized path for stroke fonts that pre-reserves line quads. int lineQuadCount = 0; for( const std::unique_ptr& glyph : aGlyphs ) { const auto& strokeGlyph = static_cast( *glyph ); for( const std::vector& points : strokeGlyph ) lineQuadCount += points.size() - 1; } reserveLineQuads( lineQuadCount ); for( const std::unique_ptr& glyph : aGlyphs ) { const auto& strokeGlyph = static_cast( *glyph ); for( const std::vector& points : strokeGlyph ) { drawPolyline( [&]( int idx ) { return points[idx]; }, points.size(), false ); } } return; } else if( allGlyphsAreOutline ) { // Optimized path for stroke fonts that pre-reserves glyph triangles. int triangleCount = 0; if( aGlyphs.size() > 0 ) { thread_pool& tp = GetKiCadThreadPool(); tp.push_loop( aGlyphs.size(), [&]( const int a, const int b) { for( int ii = a; ii < b; ++ii ) { auto glyph = static_cast( aGlyphs.at( ii ).get() ); // Only call CacheTriangulation() if it has never been done before. // Otherwise we'll hash the triangulation to see if it has been edited, // and all our glpyh editing ops update the triangulation anyway. if( glyph->TriangulatedPolyCount() == 0 ) glyph->CacheTriangulation( false ); } } ); tp.wait_for_tasks(); } for( const std::unique_ptr& glyph : aGlyphs ) { const auto& outlineGlyph = static_cast( *glyph ); for( unsigned int i = 0; i < outlineGlyph.TriangulatedPolyCount(); i++ ) { const SHAPE_POLY_SET::TRIANGULATED_POLYGON* polygon = outlineGlyph.TriangulatedPolygon( i ); triangleCount += polygon->GetTriangleCount(); } } m_currentManager->Shader( SHADER_NONE ); m_currentManager->Color( m_fillColor ); m_currentManager->Reserve( 3 * triangleCount ); for( const std::unique_ptr& glyph : aGlyphs ) { const auto& outlineGlyph = static_cast( *glyph ); for( unsigned int i = 0; i < outlineGlyph.TriangulatedPolyCount(); i++ ) { const SHAPE_POLY_SET::TRIANGULATED_POLYGON* polygon = outlineGlyph.TriangulatedPolygon( i ); for( size_t j = 0; j < polygon->GetTriangleCount(); j++ ) { VECTOR2I a, b, c; polygon->GetTriangle( j, a, b, c ); m_currentManager->Vertex( a.x, a.y, m_layerDepth ); m_currentManager->Vertex( b.x, b.y, m_layerDepth ); m_currentManager->Vertex( c.x, c.y, m_layerDepth ); } } } } else { // Regular path for( size_t i = 0; i < aGlyphs.size(); i++ ) DrawGlyph( *aGlyphs[i], i, aGlyphs.size() ); } }