/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2012 Torsten Hueter, torstenhtr gmx.de * Copyright (C) 2012-2020 Kicad Developers, see AUTHORS.txt for contributors. * Copyright (C) 2017-2018 CERN * @author Maciej Suminski * * CairoGal - Graphics Abstraction Layer for Cairo * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include // for KiROUND #include #include #include using namespace KIGFX; CAIRO_GAL_BASE::CAIRO_GAL_BASE( GAL_DISPLAY_OPTIONS& aDisplayOptions ) : GAL( aDisplayOptions ) { // Initialise grouping isGrouping = false; isElementAdded = false; groupCounter = 0; currentGroup = nullptr; lineWidth = 1.0; linePixelWidth = 1.0; lineWidthInPixels = 1.0; lineWidthIsOdd = true; // Initialise Cairo state cairo_matrix_init_identity( &cairoWorldScreenMatrix ); currentContext = nullptr; context = nullptr; surface = nullptr; // Grid color settings are different in Cairo and OpenGL SetGridColor( COLOR4D( 0.1, 0.1, 0.1, 0.8 ) ); SetAxesColor( COLOR4D( BLUE ) ); // Avoid unitialized variables: cairo_matrix_init_identity( ¤tXform ); cairo_matrix_init_identity( ¤tWorld2Screen ); } CAIRO_GAL_BASE::~CAIRO_GAL_BASE() { ClearCache(); if( surface ) cairo_surface_destroy( surface ); if( context ) cairo_destroy( context ); for( auto imageSurface : imageSurfaces ) cairo_surface_destroy( imageSurface ); } void CAIRO_GAL_BASE::beginDrawing() { resetContext(); } void CAIRO_GAL_BASE::endDrawing() { // Force remaining objects to be drawn Flush(); } void CAIRO_GAL_BASE::updateWorldScreenMatrix() { cairo_matrix_multiply( ¤tWorld2Screen, ¤tXform, &cairoWorldScreenMatrix ); } const VECTOR2D CAIRO_GAL_BASE::xform( double x, double y ) { VECTOR2D rv; rv.x = currentWorld2Screen.xx * x + currentWorld2Screen.xy * y + currentWorld2Screen.x0; rv.y = currentWorld2Screen.yx * x + currentWorld2Screen.yy * y + currentWorld2Screen.y0; return rv; } const VECTOR2D CAIRO_GAL_BASE::xform( const VECTOR2D& aP ) { return xform( aP.x, aP.y ); } const double CAIRO_GAL_BASE::angle_xform( const double aAngle ) { // calculate rotation angle due to the rotation transform // and if flipped on X axis. double world_rotation = -std::atan2( currentWorld2Screen.xy, currentWorld2Screen.xx ); // When flipped on X axis, the rotation angle is M_PI - initial angle: if( IsFlippedX() ) world_rotation = M_PI - world_rotation; return std::fmod( aAngle + world_rotation, 2.0 * M_PI ); } void CAIRO_GAL_BASE::arc_angles_xform_and_normalize( double& aStartAngle, double& aEndAngle ) { double startAngle = aStartAngle; double endAngle = aEndAngle; // When the view is flipped, the coordinates are flipped by the matrix transform // However, arc angles need to be "flipped": the flipped angle is M_PI - initial angle. if( IsFlippedX() ) { startAngle = M_PI - startAngle; endAngle = M_PI - endAngle; } // Normalize arc angles SWAP( startAngle, >, endAngle ); // now rotate arc according to the rotation transform matrix // Remark: // We call angle_xform() to calculate angles according to the flip/rotation // transform and normatize between -2M_PI and +2M_PI. // Therefore, if aStartAngle = aEndAngle + 2*n*M_PI, the transform gives // aEndAngle = aStartAngle // So, if this is the case, force the aEndAngle value to draw a circle. aStartAngle = angle_xform( startAngle ); if( std::abs( aEndAngle - aStartAngle ) >= 2*M_PI ) // arc is a full circle aEndAngle = aStartAngle + 2*M_PI; else aEndAngle = angle_xform( endAngle ); } const double CAIRO_GAL_BASE::xform( double x ) { double dx = currentWorld2Screen.xx * x; double dy = currentWorld2Screen.yx * x; return sqrt( dx * dx + dy * dy ); } static double roundp( double x ) { return floor( x + 0.5 ) + 0.5; } const VECTOR2D CAIRO_GAL_BASE::roundp( const VECTOR2D& v ) { if( lineWidthIsOdd && isStrokeEnabled ) return VECTOR2D( ::roundp( v.x ), ::roundp( v.y ) ); else return VECTOR2D( floor( v.x + 0.5 ), floor( v.y + 0.5 ) ); } void CAIRO_GAL_BASE::DrawLine( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint ) { syncLineWidth(); auto p0 = roundp( xform( aStartPoint ) ); auto p1 = roundp( xform( aEndPoint ) ); cairo_move_to( currentContext, p0.x, p0.y ); cairo_line_to( currentContext, p1.x, p1.y ); flushPath(); isElementAdded = true; } void CAIRO_GAL_BASE::syncLineWidth( bool aForceWidth, double aWidth ) { auto w = floor( xform( aForceWidth ? aWidth : lineWidth ) + 0.5 ); if (w <= 1.0) { w = 1.0; cairo_set_line_join( currentContext, CAIRO_LINE_JOIN_MITER ); cairo_set_line_cap( currentContext, CAIRO_LINE_CAP_BUTT ); cairo_set_line_width( currentContext, 1.0 ); lineWidthIsOdd = true; } else { cairo_set_line_join( currentContext, CAIRO_LINE_JOIN_ROUND ); cairo_set_line_cap( currentContext, CAIRO_LINE_CAP_ROUND ); cairo_set_line_width( currentContext, w ); lineWidthIsOdd = ((int)w % 2) == 1; } lineWidthInPixels = w; } void CAIRO_GAL_BASE::DrawSegment( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint, double aWidth ) { if( isFillEnabled ) { syncLineWidth( true, aWidth ); auto p0 = roundp( xform( aStartPoint ) ); auto p1 = roundp( xform( aEndPoint ) ); cairo_move_to( currentContext, p0.x, p0.y ); cairo_line_to( currentContext, p1.x, p1.y ); cairo_set_source_rgba( currentContext, fillColor.r, fillColor.g, fillColor.b, fillColor.a ); cairo_stroke( currentContext ); } else { aWidth /= 2.0; SetLineWidth( 1.0 ); syncLineWidth(); // Outline mode for tracks VECTOR2D startEndVector = aEndPoint - aStartPoint; double lineAngle = atan2( startEndVector.y, startEndVector.x ); double sa = sin( lineAngle + M_PI / 2.0 ); double ca = cos( lineAngle + M_PI / 2.0 ); auto pa0 = xform ( aStartPoint + VECTOR2D(aWidth * ca, aWidth * sa ) ); auto pa1 = xform ( aStartPoint - VECTOR2D(aWidth * ca, aWidth * sa ) ); auto pb0 = xform ( aEndPoint + VECTOR2D(aWidth * ca, aWidth * sa ) ); auto pb1 = xform ( aEndPoint - VECTOR2D(aWidth * ca, aWidth * sa ) ); auto pa = xform( aStartPoint ); auto pb = xform( aEndPoint ); auto rb = (pa0 - pa).EuclideanNorm(); cairo_set_source_rgba( currentContext, strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a ); cairo_move_to( currentContext, pa0.x, pa0.y ); cairo_line_to( currentContext, pb0.x, pb0.y ); cairo_move_to( currentContext, pa1.x, pa1.y ); cairo_line_to( currentContext, pb1.x, pb1.y ); cairo_arc( currentContext, pb.x, pb.y, rb, lineAngle - M_PI / 2.0, lineAngle + M_PI / 2.0 ); cairo_arc( currentContext, pa.x, pa.y, rb, lineAngle + M_PI / 2.0, lineAngle + 3.0 * M_PI / 2.0 ); flushPath(); } isElementAdded = true; } void CAIRO_GAL_BASE::DrawCircle( const VECTOR2D& aCenterPoint, double aRadius ) { syncLineWidth(); auto c = roundp( xform( aCenterPoint ) ); auto r = ::roundp( xform( aRadius ) ); cairo_set_line_width( currentContext, std::min( 2.0 * r, lineWidthInPixels ) ); cairo_new_sub_path( currentContext ); cairo_arc( currentContext, c.x, c.y, r, 0.0, 2 * M_PI ); cairo_close_path( currentContext ); flushPath(); isElementAdded = true; } void CAIRO_GAL_BASE::DrawArc( const VECTOR2D& aCenterPoint, double aRadius, double aStartAngle, double aEndAngle ) { syncLineWidth(); // calculate start and end arc angles according to the rotation transform matrix // and normalize: arc_angles_xform_and_normalize( aStartAngle, aEndAngle ); double r = xform( aRadius ); // N.B. This is backwards. We set this because we want to adjust the center // point that changes both endpoints. In the worst case, this is twice as far. // We cannot adjust radius or center based on the other because this causes the // whole arc to change position/size lineWidthIsOdd = !( static_cast( aRadius ) % 1 ); auto mid = roundp( xform( aCenterPoint ) ); cairo_set_line_width( currentContext, lineWidthInPixels ); cairo_new_sub_path( currentContext ); if( isFillEnabled ) cairo_move_to( currentContext, mid.x, mid.y ); cairo_arc( currentContext, mid.x, mid.y, r, aStartAngle, aEndAngle ); if( isFillEnabled ) cairo_close_path( currentContext ); flushPath(); isElementAdded = true; } void CAIRO_GAL_BASE::DrawArcSegment( const VECTOR2D& aCenterPoint, double aRadius, double aStartAngle, double aEndAngle, double aWidth ) { if( isFillEnabled ) { lineWidth = aWidth; isStrokeEnabled = true; isFillEnabled = false; DrawArc( aCenterPoint, aRadius, aStartAngle, aEndAngle ); isFillEnabled = true; isStrokeEnabled = false; return; } syncLineWidth(); // calculate start and end arc angles according to the rotation transform matrix // and normalize: double startAngleS = aStartAngle; double endAngleS = aEndAngle; arc_angles_xform_and_normalize( startAngleS, endAngleS ); double r = xform( aRadius ); // N.B. This is backwards. We set this because we want to adjust the center // point that changes both endpoints. In the worst case, this is twice as far. // We cannot adjust radius or center based on the other because this causes the // whole arc to change position/size lineWidthIsOdd = !( static_cast( aRadius ) % 1 ); auto mid = roundp( xform( aCenterPoint ) ); double width = xform( aWidth / 2.0 ); auto startPointS = VECTOR2D( r, 0.0 ).Rotate( startAngleS ); auto endPointS = VECTOR2D( r, 0.0 ).Rotate( endAngleS ); cairo_save( currentContext ); cairo_set_source_rgba( currentContext, strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a ); cairo_translate( currentContext, mid.x, mid.y ); cairo_new_sub_path( currentContext ); cairo_arc( currentContext, 0, 0, r - width, startAngleS, endAngleS ); cairo_new_sub_path( currentContext ); cairo_arc( currentContext, 0, 0, r + width, startAngleS, endAngleS ); cairo_new_sub_path( currentContext ); cairo_arc_negative( currentContext, startPointS.x, startPointS.y, width, startAngleS, startAngleS + M_PI ); cairo_new_sub_path( currentContext ); cairo_arc( currentContext, endPointS.x, endPointS.y, width, endAngleS, endAngleS + M_PI ); cairo_restore( currentContext ); flushPath(); isElementAdded = true; } void CAIRO_GAL_BASE::DrawRectangle( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint ) { // Calculate the diagonal points syncLineWidth(); const auto p0 = roundp( xform( aStartPoint ) ); const auto p1 = roundp( xform( VECTOR2D( aEndPoint.x, aStartPoint.y ) ) ); const auto p2 = roundp( xform( aEndPoint ) ); const auto p3 = roundp( xform( VECTOR2D( aStartPoint.x, aEndPoint.y ) ) ); // The path is composed from 4 segments cairo_move_to( currentContext, p0.x, p0.y ); cairo_line_to( currentContext, p1.x, p1.y ); cairo_line_to( currentContext, p2.x, p2.y ); cairo_line_to( currentContext, p3.x, p3.y ); cairo_close_path( currentContext ); flushPath(); isElementAdded = true; } void CAIRO_GAL_BASE::DrawPolygon( const SHAPE_POLY_SET& aPolySet ) { for( int i = 0; i < aPolySet.OutlineCount(); ++i ) drawPoly( aPolySet.COutline( i ) ); } void CAIRO_GAL_BASE::DrawPolygon( const SHAPE_LINE_CHAIN& aPolygon ) { drawPoly( aPolygon ); } void CAIRO_GAL_BASE::DrawCurve( const VECTOR2D& aStartPoint, const VECTOR2D& aControlPointA, const VECTOR2D& aControlPointB, const VECTOR2D& aEndPoint, double aFilterValue ) { // Note: aFilterValue is not used because the cubic Bezier curve is // supported by Cairo. syncLineWidth(); const auto sp = roundp( xform( aStartPoint ) ); const auto cpa = roundp( xform( aControlPointA ) ); const auto cpb = roundp( xform( aControlPointB ) ); const auto ep = roundp( xform( aEndPoint ) ); cairo_move_to( currentContext, sp.x, sp.y ); cairo_curve_to( currentContext, cpa.x, cpa.y, cpb.x, cpb.y, ep.x, ep.y ); cairo_line_to( currentContext, ep.x, ep.y ); flushPath(); isElementAdded = true; } void CAIRO_GAL_BASE::DrawBitmap( const BITMAP_BASE& aBitmap ) { cairo_save( currentContext ); // We have to calculate the pixel size in users units to draw the image. // worldUnitLength is a factor used for converting IU to inches double scale = 1.0 / ( aBitmap.GetPPI() * worldUnitLength ); // The position of the bitmap is the bitmap center. // move the draw origin to the top left bitmap corner: int w = aBitmap.GetSizePixels().x; int h = aBitmap.GetSizePixels().y; cairo_set_matrix( currentContext, ¤tWorld2Screen ); cairo_scale( currentContext, scale, scale ); cairo_translate( currentContext, -w / 2.0, -h / 2.0 ); cairo_new_path( currentContext ); cairo_surface_t* image = cairo_image_surface_create( CAIRO_FORMAT_ARGB32, w, h ); cairo_surface_flush( image ); unsigned char* pix_buffer = cairo_image_surface_get_data( image ); // The pixel buffer of the initial bitmap: const wxImage& bm_pix_buffer = *aBitmap.GetImageData(); uint32_t mask_color = ( bm_pix_buffer.GetMaskRed() << 16 ) + ( bm_pix_buffer.GetMaskGreen() << 8 ) + ( bm_pix_buffer.GetMaskBlue() ); // Copy the source bitmap to the cairo bitmap buffer. // In cairo bitmap buffer, a ARGB32 bitmap is an ARGB pixel packed into a uint_32 // 24 low bits only are used for color, top 8 are transparency. for( int row = 0; row < h; row++ ) { for( int col = 0; col < w; col++ ) { // Build the RGB24 pixel: uint32_t pixel = bm_pix_buffer.GetRed( col, row ) << 16; pixel += bm_pix_buffer.GetGreen( col, row ) << 8; pixel += bm_pix_buffer.GetBlue( col, row ); if( bm_pix_buffer.HasAlpha() ) pixel += bm_pix_buffer.GetAlpha( col, row ) << 24; else if( bm_pix_buffer.HasMask() && pixel == mask_color ) pixel += ( wxALPHA_TRANSPARENT << 24 ); else pixel += ( wxALPHA_OPAQUE << 24 ); // Write the pixel to the cairo image buffer: uint32_t* pix_ptr = (uint32_t*) pix_buffer; *pix_ptr = pixel; pix_buffer += 4; } } cairo_surface_mark_dirty( image ); cairo_set_source_surface( currentContext, image, 0, 0 ); cairo_paint( currentContext ); // store the image handle so it can be destroyed later imageSurfaces.push_back( image ); isElementAdded = true; cairo_restore( currentContext ); } void CAIRO_GAL_BASE::ResizeScreen( int aWidth, int aHeight ) { screenSize = VECTOR2I( aWidth, aHeight ); } void CAIRO_GAL_BASE::Flush() { storePath(); } void CAIRO_GAL_BASE::ClearScreen() { cairo_set_source_rgb( currentContext, m_clearColor.r, m_clearColor.g, m_clearColor.b ); cairo_rectangle( currentContext, 0.0, 0.0, screenSize.x, screenSize.y ); cairo_fill( currentContext ); } void CAIRO_GAL_BASE::SetIsFill( bool aIsFillEnabled ) { storePath(); isFillEnabled = aIsFillEnabled; if( isGrouping ) { GROUP_ELEMENT groupElement; groupElement.command = CMD_SET_FILL; groupElement.argument.boolArg = aIsFillEnabled; currentGroup->push_back( groupElement ); } } void CAIRO_GAL_BASE::SetIsStroke( bool aIsStrokeEnabled ) { storePath(); isStrokeEnabled = aIsStrokeEnabled; if( isGrouping ) { GROUP_ELEMENT groupElement; groupElement.command = CMD_SET_STROKE; groupElement.argument.boolArg = aIsStrokeEnabled; currentGroup->push_back( groupElement ); } } void CAIRO_GAL_BASE::SetStrokeColor( const COLOR4D& aColor ) { storePath(); strokeColor = aColor; if( isGrouping ) { GROUP_ELEMENT groupElement; groupElement.command = CMD_SET_STROKECOLOR; groupElement.argument.dblArg[0] = strokeColor.r; groupElement.argument.dblArg[1] = strokeColor.g; groupElement.argument.dblArg[2] = strokeColor.b; groupElement.argument.dblArg[3] = strokeColor.a; currentGroup->push_back( groupElement ); } } void CAIRO_GAL_BASE::SetFillColor( const COLOR4D& aColor ) { storePath(); fillColor = aColor; if( isGrouping ) { GROUP_ELEMENT groupElement; groupElement.command = CMD_SET_FILLCOLOR; groupElement.argument.dblArg[0] = fillColor.r; groupElement.argument.dblArg[1] = fillColor.g; groupElement.argument.dblArg[2] = fillColor.b; groupElement.argument.dblArg[3] = fillColor.a; currentGroup->push_back( groupElement ); } } void CAIRO_GAL_BASE::SetLineWidth( float aLineWidth ) { storePath(); GAL::SetLineWidth( aLineWidth ); if( isGrouping ) { GROUP_ELEMENT groupElement; groupElement.command = CMD_SET_LINE_WIDTH; groupElement.argument.dblArg[0] = aLineWidth; currentGroup->push_back( groupElement ); } else { lineWidth = aLineWidth; } } void CAIRO_GAL_BASE::SetLayerDepth( double aLayerDepth ) { super::SetLayerDepth( aLayerDepth ); storePath(); } void CAIRO_GAL_BASE::Transform( const MATRIX3x3D& aTransformation ) { cairo_matrix_t cairoTransformation, newXform; cairo_matrix_init( &cairoTransformation, aTransformation.m_data[0][0], aTransformation.m_data[1][0], aTransformation.m_data[0][1], aTransformation.m_data[1][1], aTransformation.m_data[0][2], aTransformation.m_data[1][2] ); cairo_matrix_multiply( &newXform, ¤tXform, &cairoTransformation ); currentXform = newXform; updateWorldScreenMatrix(); } void CAIRO_GAL_BASE::Rotate( double aAngle ) { storePath(); if( isGrouping ) { GROUP_ELEMENT groupElement; groupElement.command = CMD_ROTATE; groupElement.argument.dblArg[0] = aAngle; currentGroup->push_back( groupElement ); } else { cairo_matrix_rotate( ¤tXform, aAngle ); updateWorldScreenMatrix(); } } void CAIRO_GAL_BASE::Translate( const VECTOR2D& aTranslation ) { storePath(); if( isGrouping ) { GROUP_ELEMENT groupElement; groupElement.command = CMD_TRANSLATE; groupElement.argument.dblArg[0] = aTranslation.x; groupElement.argument.dblArg[1] = aTranslation.y; currentGroup->push_back( groupElement ); } else { cairo_matrix_translate ( ¤tXform, aTranslation.x, aTranslation.y ); updateWorldScreenMatrix(); } } void CAIRO_GAL_BASE::Scale( const VECTOR2D& aScale ) { storePath(); if( isGrouping ) { GROUP_ELEMENT groupElement; groupElement.command = CMD_SCALE; groupElement.argument.dblArg[0] = aScale.x; groupElement.argument.dblArg[1] = aScale.y; currentGroup->push_back( groupElement ); } else { cairo_matrix_scale( ¤tXform, aScale.x, aScale.y ); updateWorldScreenMatrix(); } } void CAIRO_GAL_BASE::Save() { storePath(); if( isGrouping ) { GROUP_ELEMENT groupElement; groupElement.command = CMD_SAVE; currentGroup->push_back( groupElement ); } else { xformStack.push_back( currentXform ); updateWorldScreenMatrix(); } } void CAIRO_GAL_BASE::Restore() { storePath(); if( isGrouping ) { GROUP_ELEMENT groupElement; groupElement.command = CMD_RESTORE; currentGroup->push_back( groupElement ); } else { if( !xformStack.empty() ) { currentXform = xformStack.back(); xformStack.pop_back(); updateWorldScreenMatrix(); } } } int CAIRO_GAL_BASE::BeginGroup() { // If the grouping is started: the actual path is stored in the group, when // a attribute was changed or when grouping stops with the end group method. storePath(); GROUP group; int groupNumber = getNewGroupNumber(); groups.insert( std::make_pair( groupNumber, group ) ); currentGroup = &groups[groupNumber]; isGrouping = true; return groupNumber; } void CAIRO_GAL_BASE::EndGroup() { storePath(); isGrouping = false; } void CAIRO_GAL_BASE::DrawGroup( int aGroupNumber ) { // This method implements a small Virtual Machine - all stored commands // are executed; nested calling is also possible storePath(); for( GROUP::iterator it = groups[aGroupNumber].begin(); it != groups[aGroupNumber].end(); ++it ) { switch( it->command ) { case CMD_SET_FILL: isFillEnabled = it->argument.boolArg; break; case CMD_SET_STROKE: isStrokeEnabled = it->argument.boolArg; break; case CMD_SET_FILLCOLOR: fillColor = COLOR4D( it->argument.dblArg[0], it->argument.dblArg[1], it->argument.dblArg[2], it->argument.dblArg[3] ); break; case CMD_SET_STROKECOLOR: strokeColor = COLOR4D( it->argument.dblArg[0], it->argument.dblArg[1], it->argument.dblArg[2], it->argument.dblArg[3] ); break; case CMD_SET_LINE_WIDTH: { // Make lines appear at least 1 pixel wide, no matter of zoom double x = 1.0, y = 1.0; cairo_device_to_user_distance( currentContext, &x, &y ); double minWidth = std::min( fabs( x ), fabs( y ) ); cairo_set_line_width( currentContext, std::max( it->argument.dblArg[0], minWidth ) ); } break; case CMD_STROKE_PATH: cairo_set_source_rgba( currentContext, strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a ); cairo_append_path( currentContext, it->cairoPath ); cairo_stroke( currentContext ); break; case CMD_FILL_PATH: cairo_set_source_rgba( currentContext, fillColor.r, fillColor.g, fillColor.b, strokeColor.a ); cairo_append_path( currentContext, it->cairoPath ); cairo_fill( currentContext ); break; /* case CMD_TRANSFORM: cairo_matrix_t matrix; cairo_matrix_init( &matrix, it->argument.dblArg[0], it->argument.dblArg[1], it->argument.dblArg[2], it->argument.dblArg[3], it->argument.dblArg[4], it->argument.dblArg[5] ); cairo_transform( currentContext, &matrix ); break; */ case CMD_ROTATE: cairo_rotate( currentContext, it->argument.dblArg[0] ); break; case CMD_TRANSLATE: cairo_translate( currentContext, it->argument.dblArg[0], it->argument.dblArg[1] ); break; case CMD_SCALE: cairo_scale( currentContext, it->argument.dblArg[0], it->argument.dblArg[1] ); break; case CMD_SAVE: cairo_save( currentContext ); break; case CMD_RESTORE: cairo_restore( currentContext ); break; case CMD_CALL_GROUP: DrawGroup( it->argument.intArg ); break; } } } void CAIRO_GAL_BASE::ChangeGroupColor( int aGroupNumber, const COLOR4D& aNewColor ) { storePath(); for( GROUP::iterator it = groups[aGroupNumber].begin(); it != groups[aGroupNumber].end(); ++it ) { if( it->command == CMD_SET_FILLCOLOR || it->command == CMD_SET_STROKECOLOR ) { it->argument.dblArg[0] = aNewColor.r; it->argument.dblArg[1] = aNewColor.g; it->argument.dblArg[2] = aNewColor.b; it->argument.dblArg[3] = aNewColor.a; } } } void CAIRO_GAL_BASE::ChangeGroupDepth( int aGroupNumber, int aDepth ) { // Cairo does not have any possibilities to change the depth coordinate of stored items, // it depends only on the order of drawing } void CAIRO_GAL_BASE::DeleteGroup( int aGroupNumber ) { storePath(); // Delete the Cairo paths std::deque::iterator it, end; for( it = groups[aGroupNumber].begin(), end = groups[aGroupNumber].end(); it != end; ++it ) { if( it->command == CMD_FILL_PATH || it->command == CMD_STROKE_PATH ) { cairo_path_destroy( it->cairoPath ); } } // Delete the group groups.erase( aGroupNumber ); } void CAIRO_GAL_BASE::ClearCache() { for( auto it = groups.begin(); it != groups.end(); ) DeleteGroup( ( it++ )->first ); } void CAIRO_GAL_BASE::SetNegativeDrawMode( bool aSetting ) { cairo_set_operator( currentContext, aSetting ? CAIRO_OPERATOR_CLEAR : CAIRO_OPERATOR_OVER ); } void CAIRO_GAL_BASE::DrawCursor( const VECTOR2D& aCursorPosition ) { cursorPosition = aCursorPosition; } void CAIRO_GAL_BASE::EnableDepthTest( bool aEnabled ) { } void CAIRO_GAL_BASE::resetContext() { for( auto imageSurface : imageSurfaces ) cairo_surface_destroy( imageSurface ); imageSurfaces.clear(); ClearScreen(); // Compute the world <-> screen transformations ComputeWorldScreenMatrix(); cairo_matrix_init( &cairoWorldScreenMatrix, worldScreenMatrix.m_data[0][0], worldScreenMatrix.m_data[1][0], worldScreenMatrix.m_data[0][1], worldScreenMatrix.m_data[1][1], worldScreenMatrix.m_data[0][2], worldScreenMatrix.m_data[1][2] ); // we work in screen-space coordinates and do the transforms outside. cairo_identity_matrix( context ); cairo_matrix_init_identity( ¤tXform ); // Start drawing with a new path cairo_new_path( context ); isElementAdded = true; updateWorldScreenMatrix(); lineWidth = 0; } void CAIRO_GAL_BASE::drawAxes( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint ) { syncLineWidth(); auto p0 = roundp( xform( aStartPoint ) ); auto p1 = roundp( xform( aEndPoint ) ); auto org = roundp( xform( VECTOR2D( 0.0, 0.0 ) ) ); // Axis origin = 0,0 coord cairo_set_source_rgba( currentContext, axesColor.r, axesColor.g, axesColor.b, axesColor.a ); cairo_move_to( currentContext, p0.x, org.y); cairo_line_to( currentContext, p1.x, org.y ); cairo_move_to( currentContext, org.x, p0.y ); cairo_line_to( currentContext, org.x, p1.y ); cairo_stroke( currentContext ); } void CAIRO_GAL_BASE::drawGridLine( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint ) { syncLineWidth(); auto p0 = roundp( xform( aStartPoint ) ); auto p1 = roundp( xform( aEndPoint ) ); cairo_set_source_rgba( currentContext, gridColor.r, gridColor.g, gridColor.b, gridColor.a ); cairo_move_to( currentContext, p0.x, p0.y ); cairo_line_to( currentContext, p1.x, p1.y ); cairo_stroke( currentContext ); } void CAIRO_GAL_BASE::drawGridCross( const VECTOR2D& aPoint ) { syncLineWidth(); VECTOR2D offset( 0, 0 ); auto size = 2.0 * lineWidthInPixels; auto p0 = roundp( xform( aPoint ) ) - VECTOR2D( size, 0 ) + offset; auto p1 = roundp( xform( aPoint ) ) + VECTOR2D( size, 0 ) + offset; auto p2 = roundp( xform( aPoint ) ) - VECTOR2D( 0, size ) + offset; auto p3 = roundp( xform( aPoint ) ) + VECTOR2D( 0, size ) + offset; cairo_set_source_rgba( currentContext, gridColor.r, gridColor.g, gridColor.b, gridColor.a ); cairo_move_to( currentContext, p0.x, p0.y ); cairo_line_to( currentContext, p1.x, p1.y ); cairo_move_to( currentContext, p2.x, p2.y ); cairo_line_to( currentContext, p3.x, p3.y ); cairo_stroke( currentContext ); } void CAIRO_GAL_BASE::drawGridPoint( const VECTOR2D& aPoint, double aSize ) { auto p = roundp( xform( aPoint ) ); auto s = xform( aSize / 2.0 ); cairo_set_source_rgba( currentContext, gridColor.r, gridColor.g, gridColor.b, gridColor.a ); cairo_move_to( currentContext, p.x, p.y ); cairo_arc( currentContext, p.x, p.y, s, 0.0, 2.0 * M_PI ); cairo_close_path( currentContext ); cairo_fill( currentContext ); } void CAIRO_GAL_BASE::flushPath() { if( isFillEnabled ) { cairo_set_source_rgba( currentContext, fillColor.r, fillColor.g, fillColor.b, fillColor.a ); if( isStrokeEnabled ) cairo_fill_preserve( currentContext ); else cairo_fill( currentContext ); } if( isStrokeEnabled ) { cairo_set_source_rgba( currentContext, strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a ); cairo_stroke( currentContext ); } } void CAIRO_GAL_BASE::storePath() { if( isElementAdded ) { isElementAdded = false; if( !isGrouping ) { if( isFillEnabled ) { cairo_set_source_rgba( currentContext, fillColor.r, fillColor.g, fillColor.b, fillColor.a ); cairo_fill_preserve( currentContext ); } if( isStrokeEnabled ) { cairo_set_source_rgba( currentContext, strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a ); cairo_stroke_preserve( currentContext ); } } else { // Copy the actual path, append it to the global path list // then check, if the path needs to be stroked/filled and // add this command to the group list; if( isStrokeEnabled ) { GROUP_ELEMENT groupElement; groupElement.cairoPath = cairo_copy_path( currentContext ); groupElement.command = CMD_STROKE_PATH; currentGroup->push_back( groupElement ); } if( isFillEnabled ) { GROUP_ELEMENT groupElement; groupElement.cairoPath = cairo_copy_path( currentContext ); groupElement.command = CMD_FILL_PATH; currentGroup->push_back( groupElement ); } } cairo_new_path( currentContext ); } } void CAIRO_GAL_BASE::blitCursor( wxMemoryDC& clientDC ) { if( !IsCursorEnabled() ) return; auto p = ToScreen( cursorPosition ); const auto cColor = getCursorColor(); const int cursorSize = fullscreenCursor ? 8000 : 80; wxColour color( cColor.r * cColor.a * 255, cColor.g * cColor.a * 255, cColor.b * cColor.a * 255, 255 ); clientDC.SetPen( wxPen( color ) ); clientDC.DrawLine( p.x - cursorSize / 2, p.y, p.x + cursorSize / 2, p.y ); clientDC.DrawLine( p.x, p.y - cursorSize / 2, p.x, p.y + cursorSize / 2 ); } void CAIRO_GAL_BASE::drawPoly( const std::deque& aPointList ) { wxCHECK( aPointList.size() > 1, /* void */ ); // Iterate over the point list and draw the segments std::deque::const_iterator it = aPointList.begin(); syncLineWidth(); const auto p = roundp( xform( it->x, it->y ) ); cairo_move_to( currentContext, p.x, p.y ); for( ++it; it != aPointList.end(); ++it ) { const auto p2 = roundp( xform( it->x, it->y ) ); cairo_line_to( currentContext, p2.x, p2.y ); } flushPath(); isElementAdded = true; } void CAIRO_GAL_BASE::drawPoly( const VECTOR2D aPointList[], int aListSize ) { wxCHECK( aListSize > 1, /* void */ ); // Iterate over the point list and draw the segments const VECTOR2D* ptr = aPointList; syncLineWidth(); const auto p = roundp( xform( ptr->x, ptr->y ) ); cairo_move_to( currentContext, p.x, p.y ); for( int i = 0; i < aListSize; ++i ) { ++ptr; const auto p2 = roundp( xform( ptr->x, ptr->y ) ); cairo_line_to( currentContext, p2.x, p2.y ); } flushPath(); isElementAdded = true; } void CAIRO_GAL_BASE::drawPoly( const SHAPE_LINE_CHAIN& aLineChain ) { wxCHECK( aLineChain.PointCount() > 1, /* void */ ); syncLineWidth(); auto numPoints = aLineChain.PointCount(); if( aLineChain.IsClosed() ) numPoints += 1; const VECTOR2I start = aLineChain.CPoint( 0 ); const auto p = roundp( xform( start.x, start.y ) ); cairo_move_to( currentContext, p.x, p.y ); for( int i = 1; i < numPoints; ++i ) { const VECTOR2I& pw = aLineChain.CPoint( i ); const auto ps = roundp( xform( pw.x, pw.y ) ); cairo_line_to( currentContext, ps.x, ps.y ); } flushPath(); isElementAdded = true; } unsigned int CAIRO_GAL_BASE::getNewGroupNumber() { wxASSERT_MSG( groups.size() < std::numeric_limits::max(), wxT( "There are no free slots to store a group" ) ); while( groups.find( groupCounter ) != groups.end() ) groupCounter++; return groupCounter++; } CAIRO_GAL::CAIRO_GAL( GAL_DISPLAY_OPTIONS& aDisplayOptions, wxWindow* aParent, wxEvtHandler* aMouseListener, wxEvtHandler* aPaintListener, const wxString& aName ) : CAIRO_GAL_BASE( aDisplayOptions ), wxWindow( aParent, wxID_ANY, wxDefaultPosition, wxDefaultSize, wxEXPAND, aName ) { // Initialise compositing state mainBuffer = 0; overlayBuffer = 0; validCompositor = false; SetTarget( TARGET_NONCACHED ); parentWindow = aParent; mouseListener = aMouseListener; paintListener = aPaintListener; // Connecting the event handlers Connect( wxEVT_PAINT, wxPaintEventHandler( CAIRO_GAL::onPaint ) ); // Mouse events are skipped to the parent Connect( wxEVT_MOTION, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) ); Connect( wxEVT_LEFT_DOWN, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) ); Connect( wxEVT_LEFT_UP, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) ); Connect( wxEVT_LEFT_DCLICK, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) ); Connect( wxEVT_MIDDLE_DOWN, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) ); Connect( wxEVT_MIDDLE_UP, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) ); Connect( wxEVT_MIDDLE_DCLICK, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) ); Connect( wxEVT_RIGHT_DOWN, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) ); Connect( wxEVT_RIGHT_UP, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) ); Connect( wxEVT_RIGHT_DCLICK, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) ); Connect( wxEVT_MOUSEWHEEL, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) ); #if defined _WIN32 || defined _WIN64 Connect( wxEVT_ENTER_WINDOW, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) ); #endif SetSize( aParent->GetClientSize() ); screenSize = VECTOR2I( aParent->GetClientSize() ); // Allocate memory for pixel storage allocateBitmaps(); isInitialized = false; } CAIRO_GAL::~CAIRO_GAL() { deleteBitmaps(); } void CAIRO_GAL::beginDrawing() { initSurface(); CAIRO_GAL_BASE::beginDrawing(); if( !validCompositor ) setCompositor(); compositor->SetMainContext( context ); compositor->SetBuffer( mainBuffer ); } void CAIRO_GAL::endDrawing() { CAIRO_GAL_BASE::endDrawing(); // Merge buffers on the screen compositor->DrawBuffer( mainBuffer ); compositor->DrawBuffer( overlayBuffer ); // Now translate the raw context data from the format stored // by cairo into a format understood by wxImage. pixman_image_t* dstImg = pixman_image_create_bits( wxPlatformInfo::Get().GetEndianness() == wxENDIAN_LITTLE ? PIXMAN_b8g8r8 : PIXMAN_r8g8b8, screenSize.x, screenSize.y, (uint32_t*) wxOutput, wxBufferWidth * 3 ); pixman_image_t* srcImg = pixman_image_create_bits( PIXMAN_a8r8g8b8, screenSize.x, screenSize.y, (uint32_t*) bitmapBuffer, wxBufferWidth * 4 ); pixman_image_composite( PIXMAN_OP_SRC, srcImg, NULL, dstImg, 0, 0, 0, 0, 0, 0, screenSize.x, screenSize.y ); // Free allocated memory pixman_image_unref( srcImg ); pixman_image_unref( dstImg ); wxImage img( wxBufferWidth, screenSize.y, wxOutput, true ); wxBitmap bmp( img ); wxMemoryDC mdc( bmp ); wxClientDC clientDC( this ); // Now it is the time to blit the mouse cursor blitCursor( mdc ); clientDC.Blit( 0, 0, screenSize.x, screenSize.y, &mdc, 0, 0, wxCOPY ); deinitSurface(); } void CAIRO_GAL::PostPaint( wxPaintEvent& aEvent ) { // posts an event to m_paint_listener to ask for redraw the canvas. if( paintListener ) { wxPostEvent( paintListener, aEvent ); } } void CAIRO_GAL::ResizeScreen( int aWidth, int aHeight ) { CAIRO_GAL_BASE::ResizeScreen( aWidth, aHeight ); // Recreate the bitmaps deleteBitmaps(); allocateBitmaps(); if( validCompositor ) compositor->Resize( aWidth, aHeight ); validCompositor = false; SetSize( wxSize( aWidth, aHeight ) ); } bool CAIRO_GAL::Show( bool aShow ) { bool s = wxWindow::Show( aShow ); if( aShow ) wxWindow::Raise(); return s; } int CAIRO_GAL::BeginGroup() { initSurface(); return CAIRO_GAL_BASE::BeginGroup(); } void CAIRO_GAL::EndGroup() { CAIRO_GAL_BASE::EndGroup(); deinitSurface(); } void CAIRO_GAL::SetTarget( RENDER_TARGET aTarget ) { // If the compositor is not set, that means that there is a recaching process going on // and we do not need the compositor now if( !validCompositor ) return; // Cairo grouping prevents display of overlapping items on the same layer in the lighter color if( isInitialized ) storePath(); switch( aTarget ) { default: case TARGET_CACHED: case TARGET_NONCACHED: compositor->SetBuffer( mainBuffer ); break; case TARGET_OVERLAY: compositor->SetBuffer( overlayBuffer ); break; } currentTarget = aTarget; } RENDER_TARGET CAIRO_GAL::GetTarget() const { return currentTarget; } void CAIRO_GAL::ClearTarget( RENDER_TARGET aTarget ) { // Save the current state unsigned int currentBuffer = compositor->GetBuffer(); switch( aTarget ) { // Cached and noncached items are rendered to the same buffer default: case TARGET_CACHED: case TARGET_NONCACHED: compositor->SetBuffer( mainBuffer ); break; case TARGET_OVERLAY: compositor->SetBuffer( overlayBuffer ); break; } compositor->ClearBuffer( COLOR4D::BLACK ); // Restore the previous state compositor->SetBuffer( currentBuffer ); } void CAIRO_GAL::initSurface() { if( isInitialized ) return; surface = cairo_image_surface_create_for_data( bitmapBuffer, GAL_FORMAT, wxBufferWidth, screenSize.y, stride ); context = cairo_create( surface ); #ifdef DEBUG cairo_status_t status = cairo_status( context ); wxASSERT_MSG( status == CAIRO_STATUS_SUCCESS, wxT( "Cairo context creation error" ) ); #endif /* DEBUG */ currentContext = context; isInitialized = true; } void CAIRO_GAL::deinitSurface() { if( !isInitialized ) return; cairo_destroy( context ); context = nullptr; cairo_surface_destroy( surface ); surface = nullptr; isInitialized = false; } void CAIRO_GAL::allocateBitmaps() { wxBufferWidth = screenSize.x; while( ( ( wxBufferWidth * 3 ) % 4 ) != 0 ) wxBufferWidth++; // Create buffer, use the system independent Cairo context backend stride = cairo_format_stride_for_width( GAL_FORMAT, wxBufferWidth ); bufferSize = stride * screenSize.y; bitmapBuffer = new unsigned char[bufferSize * 4]; wxOutput = new unsigned char[wxBufferWidth * 3 * screenSize.y]; } void CAIRO_GAL::deleteBitmaps() { delete[] bitmapBuffer; delete[] wxOutput; } void CAIRO_GAL::setCompositor() { // Recreate the compositor with the new Cairo context compositor.reset( new CAIRO_COMPOSITOR( ¤tContext ) ); compositor->Resize( screenSize.x, screenSize.y ); compositor->SetAntialiasingMode( options.cairo_antialiasing_mode ); // Prepare buffers mainBuffer = compositor->CreateBuffer(); overlayBuffer = compositor->CreateBuffer(); validCompositor = true; } void CAIRO_GAL::onPaint( wxPaintEvent& aEvent ) { PostPaint( aEvent ); } void CAIRO_GAL::skipMouseEvent( wxMouseEvent& aEvent ) { // Post the mouse event to the event listener registered in constructor, if any if( mouseListener ) wxPostEvent( mouseListener, aEvent ); } bool CAIRO_GAL::updatedGalDisplayOptions( const GAL_DISPLAY_OPTIONS& aOptions ) { bool refresh = false; if( validCompositor && aOptions.cairo_antialiasing_mode != compositor->GetAntialiasingMode() ) { compositor->SetAntialiasingMode( options.cairo_antialiasing_mode ); validCompositor = false; deinitSurface(); refresh = true; } if( super::updatedGalDisplayOptions( aOptions ) ) { Refresh(); refresh = true; } return refresh; } void CAIRO_GAL_BASE::DrawGrid() { SetTarget( TARGET_NONCACHED ); // Draw the grid // For the drawing the start points, end points and increments have // to be calculated in world coordinates VECTOR2D worldStartPoint = screenWorldMatrix * VECTOR2D( 0.0, 0.0 ); VECTOR2D worldEndPoint = screenWorldMatrix * VECTOR2D( screenSize ); // Compute the line marker or point radius of the grid // Note: generic grids can't handle sub-pixel lines without // either losing fine/course distinction or having some dots // fail to render float marker = std::fmax( 1.0f, gridLineWidth ) / worldScale; float doubleMarker = 2.0f * marker; // Draw axes if desired if( axesEnabled ) { SetLineWidth( marker ); drawAxes( worldStartPoint, worldEndPoint ); } if( !gridVisibility || gridSize.x == 0 || gridSize.y == 0 ) return; VECTOR2D gridScreenSize( gridSize ); double gridThreshold = KiROUND( computeMinGridSpacing() / worldScale ); if( gridStyle == GRID_STYLE::SMALL_CROSS ) gridThreshold *= 2.0; // If we cannot display the grid density, scale down by a tick size and // try again. Eventually, we get some representation of the grid while( std::min( gridScreenSize.x, gridScreenSize.y ) <= gridThreshold ) { gridScreenSize = gridScreenSize * static_cast( gridTick ); } // Compute grid starting and ending indexes to draw grid points on the // visible screen area // Note: later any point coordinate will be offsetted by gridOrigin int gridStartX = KiROUND( ( worldStartPoint.x - gridOrigin.x ) / gridScreenSize.x ); int gridEndX = KiROUND( ( worldEndPoint.x - gridOrigin.x ) / gridScreenSize.x ); int gridStartY = KiROUND( ( worldStartPoint.y - gridOrigin.y ) / gridScreenSize.y ); int gridEndY = KiROUND( ( worldEndPoint.y - gridOrigin.y ) / gridScreenSize.y ); // Ensure start coordinate > end coordinate SWAP( gridStartX, >, gridEndX ); SWAP( gridStartY, >, gridEndY ); // Ensure the grid fills the screen --gridStartX; ++gridEndX; --gridStartY; ++gridEndY; // Draw the grid behind all other layers SetLayerDepth( depthRange.y * 0.75 ); if( gridStyle == GRID_STYLE::LINES ) { // Now draw the grid, every coarse grid line gets the double width // Vertical lines for( int j = gridStartY; j <= gridEndY; j++ ) { const double y = j * gridScreenSize.y + gridOrigin.y; if( axesEnabled && y == 0.0 ) continue; SetLineWidth( ( j % gridTick ) ? marker : doubleMarker ); drawGridLine( VECTOR2D( gridStartX * gridScreenSize.x + gridOrigin.x, y ), VECTOR2D( gridEndX * gridScreenSize.x + gridOrigin.x, y ) ); } // Horizontal lines for( int i = gridStartX; i <= gridEndX; i++ ) { const double x = i * gridScreenSize.x + gridOrigin.x; if( axesEnabled && x == 0.0 ) continue; SetLineWidth( ( i % gridTick ) ? marker : doubleMarker ); drawGridLine( VECTOR2D( x, gridStartY * gridScreenSize.y + gridOrigin.y ), VECTOR2D( x, gridEndY * gridScreenSize.y + gridOrigin.y ) ); } } else // Dots or Crosses grid { for( int j = gridStartY; j <= gridEndY; j++ ) { bool tickY = ( j % gridTick == 0 ); for( int i = gridStartX; i <= gridEndX; i++ ) { bool tickX = ( i % gridTick == 0 ); SetLineWidth( ( ( tickX && tickY ) ? doubleMarker : marker ) ); auto pos = VECTOR2D( i * gridScreenSize.x + gridOrigin.x, j * gridScreenSize.y + gridOrigin.y ); if( gridStyle == GRID_STYLE::SMALL_CROSS ) drawGridCross( pos ); else if( gridStyle == GRID_STYLE::DOTS ) drawGridPoint( pos, GetLineWidth() ); } } } }