/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2019 CERN * @author Tomasz Wlostowski * @author Alejandro GarcĂ­a Montoro * * Point in polygon algorithm adapted from Clipper Library (C) Angus Johnson, * subject to Clipper library license. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace ClipperLib; SHAPE_POLY_SET::SHAPE_POLY_SET() : SHAPE( SH_POLY_SET ) { } SHAPE_POLY_SET::SHAPE_POLY_SET( const SHAPE_POLY_SET& aOther, bool aDeepCopy ) : SHAPE( SH_POLY_SET ), m_polys( aOther.m_polys ) { if( aOther.IsTriangulationUpToDate() ) { for( unsigned i = 0; i < aOther.TriangulatedPolyCount(); i++ ) m_triangulatedPolys.push_back( std::make_unique( *aOther.TriangulatedPolygon( i ) ) ); m_hash = aOther.GetHash(); m_triangulationValid = true; } } SHAPE_POLY_SET::~SHAPE_POLY_SET() { } SHAPE* SHAPE_POLY_SET::Clone() const { return new SHAPE_POLY_SET( *this ); } bool SHAPE_POLY_SET::GetRelativeIndices( int aGlobalIdx, SHAPE_POLY_SET::VERTEX_INDEX* aRelativeIndices ) const { int polygonIdx = 0; unsigned int contourIdx = 0; int vertexIdx = 0; int currentGlobalIdx = 0; for( polygonIdx = 0; polygonIdx < OutlineCount(); polygonIdx++ ) { const POLYGON currentPolygon = CPolygon( polygonIdx ); for( contourIdx = 0; contourIdx < currentPolygon.size(); contourIdx++ ) { SHAPE_LINE_CHAIN currentContour = currentPolygon[contourIdx]; int totalPoints = currentContour.PointCount(); for( vertexIdx = 0; vertexIdx < totalPoints; vertexIdx++ ) { // Check if the current vertex is the globally indexed as aGlobalIdx if( currentGlobalIdx == aGlobalIdx ) { aRelativeIndices->m_polygon = polygonIdx; aRelativeIndices->m_contour = contourIdx; aRelativeIndices->m_vertex = vertexIdx; return true; } // Advance currentGlobalIdx++; } } } return false; } bool SHAPE_POLY_SET::GetGlobalIndex( SHAPE_POLY_SET::VERTEX_INDEX aRelativeIndices, int& aGlobalIdx ) { int selectedVertex = aRelativeIndices.m_vertex; unsigned int selectedContour = aRelativeIndices.m_contour; unsigned int selectedPolygon = aRelativeIndices.m_polygon; // Check whether the vertex indices make sense in this poly set if( selectedPolygon < m_polys.size() && selectedContour < m_polys[selectedPolygon].size() && selectedVertex < m_polys[selectedPolygon][selectedContour].PointCount() ) { POLYGON currentPolygon; aGlobalIdx = 0; for( unsigned int polygonIdx = 0; polygonIdx < selectedPolygon; polygonIdx++ ) { currentPolygon = Polygon( polygonIdx ); for( unsigned int contourIdx = 0; contourIdx < currentPolygon.size(); contourIdx++ ) { aGlobalIdx += currentPolygon[contourIdx].PointCount(); } } currentPolygon = Polygon( selectedPolygon ); for( unsigned int contourIdx = 0; contourIdx < selectedContour; contourIdx++ ) { aGlobalIdx += currentPolygon[contourIdx].PointCount(); } aGlobalIdx += selectedVertex; return true; } else { return false; } } int SHAPE_POLY_SET::NewOutline() { SHAPE_LINE_CHAIN empty_path; POLYGON poly; empty_path.SetClosed( true ); poly.push_back( empty_path ); m_polys.push_back( poly ); return m_polys.size() - 1; } int SHAPE_POLY_SET::NewHole( int aOutline ) { SHAPE_LINE_CHAIN empty_path; empty_path.SetClosed( true ); // Default outline is the last one if( aOutline < 0 ) aOutline += m_polys.size(); // Add hole to the selected outline m_polys[aOutline].push_back( empty_path ); return m_polys.back().size() - 2; } int SHAPE_POLY_SET::Append( int x, int y, int aOutline, int aHole, bool aAllowDuplication ) { if( aOutline < 0 ) aOutline += m_polys.size(); int idx; if( aHole < 0 ) idx = 0; else idx = aHole + 1; assert( aOutline < (int) m_polys.size() ); assert( idx < (int) m_polys[aOutline].size() ); m_polys[aOutline][idx].Append( x, y, aAllowDuplication ); return m_polys[aOutline][idx].PointCount(); } void SHAPE_POLY_SET::InsertVertex( int aGlobalIndex, VECTOR2I aNewVertex ) { VERTEX_INDEX index; if( aGlobalIndex < 0 ) aGlobalIndex = 0; if( aGlobalIndex >= TotalVertices() ) { Append( aNewVertex ); } else { // Assure the position to be inserted exists; throw an exception otherwise if( GetRelativeIndices( aGlobalIndex, &index ) ) m_polys[index.m_polygon][index.m_contour].Insert( index.m_vertex, aNewVertex ); else throw( std::out_of_range( "aGlobalIndex-th vertex does not exist" ) ); } } int SHAPE_POLY_SET::VertexCount( int aOutline, int aHole ) const { if( m_polys.size() == 0 ) // Empty poly set return 0; if( aOutline < 0 ) // Use last outline aOutline += m_polys.size(); int idx; if( aHole < 0 ) idx = 0; else idx = aHole + 1; if( aOutline >= (int) m_polys.size() ) // not existing outline return 0; if( idx >= (int) m_polys[aOutline].size() ) // not existing hole return 0; return m_polys[aOutline][idx].PointCount(); } SHAPE_POLY_SET SHAPE_POLY_SET::Subset( int aFirstPolygon, int aLastPolygon ) { assert( aFirstPolygon >= 0 && aLastPolygon <= OutlineCount() ); SHAPE_POLY_SET newPolySet; for( int index = aFirstPolygon; index < aLastPolygon; index++ ) { newPolySet.m_polys.push_back( Polygon( index ) ); } return newPolySet; } VECTOR2I& SHAPE_POLY_SET::Vertex( int aIndex, int aOutline, int aHole ) { if( aOutline < 0 ) aOutline += m_polys.size(); int idx; if( aHole < 0 ) idx = 0; else idx = aHole + 1; assert( aOutline < (int) m_polys.size() ); assert( idx < (int) m_polys[aOutline].size() ); return m_polys[aOutline][idx].Point( aIndex ); } const VECTOR2I& SHAPE_POLY_SET::CVertex( int aIndex, int aOutline, int aHole ) const { if( aOutline < 0 ) aOutline += m_polys.size(); int idx; if( aHole < 0 ) idx = 0; else idx = aHole + 1; assert( aOutline < (int) m_polys.size() ); assert( idx < (int) m_polys[aOutline].size() ); return m_polys[aOutline][idx].CPoint( aIndex ); } VECTOR2I& SHAPE_POLY_SET::Vertex( int aGlobalIndex ) { SHAPE_POLY_SET::VERTEX_INDEX index; // Assure the passed index references a legal position; abort otherwise if( !GetRelativeIndices( aGlobalIndex, &index ) ) throw( std::out_of_range( "aGlobalIndex-th vertex does not exist" ) ); return m_polys[index.m_polygon][index.m_contour].Point( index.m_vertex ); } const VECTOR2I& SHAPE_POLY_SET::CVertex( int aGlobalIndex ) const { SHAPE_POLY_SET::VERTEX_INDEX index; // Assure the passed index references a legal position; abort otherwise if( !GetRelativeIndices( aGlobalIndex, &index ) ) throw( std::out_of_range( "aGlobalIndex-th vertex does not exist" ) ); return m_polys[index.m_polygon][index.m_contour].CPoint( index.m_vertex ); } VECTOR2I& SHAPE_POLY_SET::Vertex( SHAPE_POLY_SET::VERTEX_INDEX index ) { return Vertex( index.m_vertex, index.m_polygon, index.m_contour - 1 ); } const VECTOR2I& SHAPE_POLY_SET::CVertex( SHAPE_POLY_SET::VERTEX_INDEX index ) const { return CVertex( index.m_vertex, index.m_polygon, index.m_contour - 1 ); } bool SHAPE_POLY_SET::GetNeighbourIndexes( int aGlobalIndex, int* aPrevious, int* aNext ) { SHAPE_POLY_SET::VERTEX_INDEX index; // If the edge does not exist, throw an exception, it is an illegal access memory error if( !GetRelativeIndices( aGlobalIndex, &index ) ) return false; // Calculate the previous and next index of aGlobalIndex, corresponding to // the same contour; VERTEX_INDEX inext = index; int lastpoint = m_polys[index.m_polygon][index.m_contour].SegmentCount(); if( index.m_vertex == 0 ) { index.m_vertex = lastpoint; inext.m_vertex = 1; } else if( index.m_vertex == lastpoint ) { index.m_vertex--; inext.m_vertex = 0; } else { inext.m_vertex++; index.m_vertex--; } if( aPrevious ) { int previous; GetGlobalIndex( index, previous ); *aPrevious = previous; } if( aNext ) { int next; GetGlobalIndex( inext, next ); *aNext = next; } return true; } bool SHAPE_POLY_SET::IsPolygonSelfIntersecting( int aPolygonIndex ) const { CONST_SEGMENT_ITERATOR iterator = CIterateSegmentsWithHoles( aPolygonIndex ); CONST_SEGMENT_ITERATOR innerIterator; for( iterator = CIterateSegmentsWithHoles( aPolygonIndex ); iterator; iterator++ ) { SEG firstSegment = *iterator; // Iterate through all remaining segments. innerIterator = iterator; // Start in the next segment, we don't want to check collision between a segment and itself for( innerIterator++; innerIterator; innerIterator++ ) { SEG secondSegment = *innerIterator; // Check whether the two segments built collide, only when they are not adjacent. if( !iterator.IsAdjacent( innerIterator ) && firstSegment.Collide( secondSegment, 0 ) ) return true; } } return false; } bool SHAPE_POLY_SET::IsSelfIntersecting() const { for( unsigned int polygon = 0; polygon < m_polys.size(); polygon++ ) { if( IsPolygonSelfIntersecting( polygon ) ) return true; } return false; } int SHAPE_POLY_SET::AddOutline( const SHAPE_LINE_CHAIN& aOutline ) { assert( aOutline.IsClosed() ); POLYGON poly; poly.push_back( aOutline ); m_polys.push_back( poly ); return m_polys.size() - 1; } int SHAPE_POLY_SET::AddHole( const SHAPE_LINE_CHAIN& aHole, int aOutline ) { assert( m_polys.size() ); if( aOutline < 0 ) aOutline += m_polys.size(); POLYGON& poly = m_polys[aOutline]; assert( aOutline < (int)m_polys.size() ); assert( poly.size() ); poly.push_back( aHole ); return poly.size() - 1; } void SHAPE_POLY_SET::booleanOp( ClipperLib::ClipType aType, const SHAPE_POLY_SET& aOtherShape, POLYGON_MODE aFastMode ) { booleanOp( aType, *this, aOtherShape, aFastMode ); } void SHAPE_POLY_SET::booleanOp( ClipperLib::ClipType aType, const SHAPE_POLY_SET& aShape, const SHAPE_POLY_SET& aOtherShape, POLYGON_MODE aFastMode ) { Clipper c; c.StrictlySimple( aFastMode == PM_STRICTLY_SIMPLE ); for( auto poly : aShape.m_polys ) { for( size_t i = 0 ; i < poly.size(); i++ ) c.AddPath( poly[i].convertToClipper( i == 0 ), ptSubject, true ); } for( auto poly : aOtherShape.m_polys ) { for( size_t i = 0; i < poly.size(); i++ ) c.AddPath( poly[i].convertToClipper( i == 0 ), ptClip, true ); } PolyTree solution; c.Execute( aType, solution, pftNonZero, pftNonZero ); importTree( &solution ); } void SHAPE_POLY_SET::BooleanAdd( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode ) { booleanOp( ctUnion, b, aFastMode ); } void SHAPE_POLY_SET::BooleanSubtract( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode ) { booleanOp( ctDifference, b, aFastMode ); } void SHAPE_POLY_SET::BooleanIntersection( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode ) { booleanOp( ctIntersection, b, aFastMode ); } void SHAPE_POLY_SET::BooleanAdd( const SHAPE_POLY_SET& a, const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode ) { booleanOp( ctUnion, a, b, aFastMode ); } void SHAPE_POLY_SET::BooleanSubtract( const SHAPE_POLY_SET& a, const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode ) { booleanOp( ctDifference, a, b, aFastMode ); } void SHAPE_POLY_SET::BooleanIntersection( const SHAPE_POLY_SET& a, const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode ) { booleanOp( ctIntersection, a, b, aFastMode ); } void SHAPE_POLY_SET::InflateWithLinkedHoles( int aFactor, int aCircleSegmentsCount, POLYGON_MODE aFastMode ) { Simplify( aFastMode ); Inflate( aFactor, aCircleSegmentsCount ); Fracture( aFastMode ); } void SHAPE_POLY_SET::Inflate( int aFactor, int aCircleSegmentsCount, bool aPreseveCorners ) { // A static table to avoid repetitive calculations of the coefficient // 1.0 - cos( M_PI/aCircleSegmentsCount) // aCircleSegmentsCount is most of time <= 64 and usually 8, 12, 16, 32 #define SEG_CNT_MAX 64 static double arc_tolerance_factor[SEG_CNT_MAX + 1]; ClipperOffset c; // N.B. using jtSquare here does not create square corners. They end up mitered by // aFactor. Setting jtMiter and forcing the limit to be aFactor creates sharp corners. JoinType type = aPreseveCorners ? jtMiter : jtRound; for( const POLYGON& poly : m_polys ) { for( size_t i = 0; i < poly.size(); i++ ) c.AddPath( poly[i].convertToClipper( i == 0 ), type, etClosedPolygon ); } PolyTree solution; // Calculate the arc tolerance (arc error) from the seg count by circle. // the seg count is nn = M_PI / acos(1.0 - c.ArcTolerance / abs(aFactor)) // see: // www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperOffset/Properties/ArcTolerance.htm if( aCircleSegmentsCount < 6 ) // avoid incorrect aCircleSegmentsCount values aCircleSegmentsCount = 6; double coeff; if( aCircleSegmentsCount > SEG_CNT_MAX || arc_tolerance_factor[aCircleSegmentsCount] == 0 ) { coeff = 1.0 - cos( M_PI / aCircleSegmentsCount ); if( aCircleSegmentsCount <= SEG_CNT_MAX ) arc_tolerance_factor[aCircleSegmentsCount] = coeff; } else coeff = arc_tolerance_factor[aCircleSegmentsCount]; c.ArcTolerance = std::abs( aFactor ) * coeff; c.MiterLimit = std::abs( aFactor ); c.Execute( solution, aFactor ); importTree( &solution ); } void SHAPE_POLY_SET::importTree( PolyTree* tree ) { m_polys.clear(); for( PolyNode* n = tree->GetFirst(); n; n = n->GetNext() ) { if( !n->IsHole() ) { POLYGON paths; paths.reserve( n->Childs.size() + 1 ); paths.push_back( n->Contour ); for( unsigned int i = 0; i < n->Childs.size(); i++ ) paths.push_back( n->Childs[i]->Contour ); m_polys.push_back( paths ); } } } struct FractureEdge { FractureEdge( bool connected, SHAPE_LINE_CHAIN* owner, int index ) : m_connected( connected ), m_next( NULL ) { m_p1 = owner->CPoint( index ); m_p2 = owner->CPoint( index + 1 ); } FractureEdge( int y = 0 ) : m_connected( false ), m_next( NULL ) { m_p1.x = m_p2.y = y; } FractureEdge( bool connected, const VECTOR2I& p1, const VECTOR2I& p2 ) : m_connected( connected ), m_p1( p1 ), m_p2( p2 ), m_next( NULL ) { } bool matches( int y ) const { int y_min = std::min( m_p1.y, m_p2.y ); int y_max = std::max( m_p1.y, m_p2.y ); return ( y >= y_min ) && ( y <= y_max ); } bool m_connected; VECTOR2I m_p1, m_p2; FractureEdge* m_next; }; typedef std::vector FractureEdgeSet; static int processEdge( FractureEdgeSet& edges, FractureEdge* edge ) { int x = edge->m_p1.x; int y = edge->m_p1.y; int min_dist = std::numeric_limits::max(); int x_nearest = 0; FractureEdge* e_nearest = NULL; for( FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i ) { if( !(*i)->matches( y ) ) continue; int x_intersect; if( (*i)->m_p1.y == (*i)->m_p2.y ) // horizontal edge x_intersect = std::max( (*i)->m_p1.x, (*i)->m_p2.x ); else x_intersect = (*i)->m_p1.x + rescale( (*i)->m_p2.x - (*i)->m_p1.x, y - (*i)->m_p1.y, (*i)->m_p2.y - (*i)->m_p1.y ); int dist = ( x - x_intersect ); if( dist >= 0 && dist < min_dist && (*i)->m_connected ) { min_dist = dist; x_nearest = x_intersect; e_nearest = (*i); } } if( e_nearest && e_nearest->m_connected ) { int count = 0; FractureEdge* lead1 = new FractureEdge( true, VECTOR2I( x_nearest, y ), VECTOR2I( x, y ) ); FractureEdge* lead2 = new FractureEdge( true, VECTOR2I( x, y ), VECTOR2I( x_nearest, y ) ); FractureEdge* split_2 = new FractureEdge( true, VECTOR2I( x_nearest, y ), e_nearest->m_p2 ); edges.push_back( split_2 ); edges.push_back( lead1 ); edges.push_back( lead2 ); FractureEdge* link = e_nearest->m_next; e_nearest->m_p2 = VECTOR2I( x_nearest, y ); e_nearest->m_next = lead1; lead1->m_next = edge; FractureEdge* last; for( last = edge; last->m_next != edge; last = last->m_next ) { last->m_connected = true; count++; } last->m_connected = true; last->m_next = lead2; lead2->m_next = split_2; split_2->m_next = link; return count + 1; } return 0; } void SHAPE_POLY_SET::fractureSingle( POLYGON& paths ) { FractureEdgeSet edges; FractureEdgeSet border_edges; FractureEdge* root = NULL; bool first = true; if( paths.size() == 1 ) return; int num_unconnected = 0; for( SHAPE_LINE_CHAIN& path : paths ) { int index = 0; FractureEdge* prev = NULL, * first_edge = NULL; int x_min = std::numeric_limits::max(); for( int i = 0; i < path.PointCount(); i++ ) { const VECTOR2I& p = path.CPoint( i ); if( p.x < x_min ) x_min = p.x; } for( int i = 0; i < path.PointCount(); i++ ) { FractureEdge* fe = new FractureEdge( first, &path, index++ ); if( !root ) root = fe; if( !first_edge ) first_edge = fe; if( prev ) prev->m_next = fe; if( i == path.PointCount() - 1 ) fe->m_next = first_edge; prev = fe; edges.push_back( fe ); if( !first ) { if( fe->m_p1.x == x_min ) border_edges.push_back( fe ); } if( !fe->m_connected ) num_unconnected++; } first = false; // first path is always the outline } // keep connecting holes to the main outline, until there's no holes left... while( num_unconnected > 0 ) { int x_min = std::numeric_limits::max(); FractureEdge* smallestX = NULL; // find the left-most hole edge and merge with the outline for( FractureEdgeSet::iterator i = border_edges.begin(); i != border_edges.end(); ++i ) { int xt = (*i)->m_p1.x; if( ( xt < x_min ) && !(*i)->m_connected ) { x_min = xt; smallestX = *i; } } num_unconnected -= processEdge( edges, smallestX ); } paths.clear(); SHAPE_LINE_CHAIN newPath; newPath.SetClosed( true ); FractureEdge* e; for( e = root; e->m_next != root; e = e->m_next ) newPath.Append( e->m_p1 ); newPath.Append( e->m_p1 ); for( FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i ) delete *i; paths.push_back( newPath ); } void SHAPE_POLY_SET::Fracture( POLYGON_MODE aFastMode ) { Simplify( aFastMode ); // remove overlapping holes/degeneracy for( POLYGON& paths : m_polys ) { fractureSingle( paths ); } } void SHAPE_POLY_SET::unfractureSingle( SHAPE_POLY_SET::POLYGON& aPoly ) { assert( aPoly.size() == 1 ); struct EDGE { int m_index = 0; SHAPE_LINE_CHAIN* m_poly = nullptr; bool m_duplicate = false; EDGE( SHAPE_LINE_CHAIN* aPolygon, int aIndex ) : m_index( aIndex ), m_poly( aPolygon ) {} bool compareSegs( const SEG& s1, const SEG& s2 ) const { return (s1.A == s2.B && s1.B == s2.A); } bool operator==( const EDGE& aOther ) const { return compareSegs( m_poly->CSegment( m_index ), aOther.m_poly->CSegment( aOther.m_index ) ); } bool operator!=( const EDGE& aOther ) const { return !compareSegs( m_poly->CSegment( m_index ), aOther.m_poly->CSegment( aOther.m_index ) ); } struct HASH { std::size_t operator()( const EDGE& aEdge ) const { const auto& a = aEdge.m_poly->CSegment( aEdge.m_index ); return (std::size_t) ( a.A.x + a.B.x + a.A.y + a.B.y ); } }; }; struct EDGE_LIST_ENTRY { int index; EDGE_LIST_ENTRY* next; }; std::unordered_set uniqueEdges; auto lc = aPoly[0]; lc.Simplify(); auto edgeList = std::make_unique( lc.SegmentCount() ); for( int i = 0; i < lc.SegmentCount(); i++ ) { edgeList[i].index = i; edgeList[i].next = &edgeList[ (i != lc.SegmentCount() - 1) ? i + 1 : 0 ]; } std::unordered_set queue; for( int i = 0; i < lc.SegmentCount(); i++ ) { EDGE e( &lc, i ); uniqueEdges.insert( e ); } for( int i = 0; i < lc.SegmentCount(); i++ ) { EDGE e( &lc, i ); auto it = uniqueEdges.find( e ); if( it != uniqueEdges.end() && it->m_index != i ) { int e1 = it->m_index; int e2 = i; if( e1 > e2 ) std::swap( e1, e2 ); int e1_prev = e1 - 1; if( e1_prev < 0 ) e1_prev = lc.SegmentCount() - 1; int e2_prev = e2 - 1; if( e2_prev < 0 ) e2_prev = lc.SegmentCount() - 1; int e1_next = e1 + 1; if( e1_next == lc.SegmentCount() ) e1_next = 0; int e2_next = e2 + 1; if( e2_next == lc.SegmentCount() ) e2_next = 0; edgeList[e1_prev].next = &edgeList[ e2_next ]; edgeList[e2_prev].next = &edgeList[ e1_next ]; edgeList[i].next = nullptr; edgeList[it->m_index].next = nullptr; } } for( int i = 0; i < lc.SegmentCount(); i++ ) { if( edgeList[i].next ) queue.insert( &edgeList[i] ); } auto edgeBuf = std::make_unique( lc.SegmentCount() ); int n = 0; int outline = -1; POLYGON result; while( queue.size() ) { auto e_first = (*queue.begin() ); auto e = e_first; int cnt = 0; do { edgeBuf[cnt++] = e; e = e->next; } while( e && e != e_first ); SHAPE_LINE_CHAIN outl; for( int i = 0; i < cnt; i++ ) { auto p = lc.CPoint( edgeBuf[i]->index ); outl.Append( p ); queue.erase( edgeBuf[i] ); } outl.SetClosed( true ); bool cw = outl.Area() > 0.0; if( cw ) outline = n; result.push_back( outl ); n++; } if( outline > 0 ) std::swap( result[0], result[outline] ); aPoly = result; } bool SHAPE_POLY_SET::HasHoles() const { // Iterate through all the polygons on the set for( const POLYGON& paths : m_polys ) { // If any of them has more than one contour, it is a hole. if( paths.size() > 1 ) return true; } // Return false if and only if every polygon has just one outline, without holes. return false; } void SHAPE_POLY_SET::Unfracture( POLYGON_MODE aFastMode ) { for( POLYGON& path : m_polys ) { unfractureSingle( path ); } Simplify( aFastMode ); // remove overlapping holes/degeneracy } void SHAPE_POLY_SET::Simplify( POLYGON_MODE aFastMode ) { SHAPE_POLY_SET empty; booleanOp( ctUnion, empty, aFastMode ); } int SHAPE_POLY_SET::NormalizeAreaOutlines() { // We are expecting only one main outline, but this main outline can have holes // if holes: combine holes and remove them from the main outline. // Note also we are using SHAPE_POLY_SET::PM_STRICTLY_SIMPLE in polygon // calculations, but it is not mandatory. It is used mainly // because there is usually only very few vertices in area outlines SHAPE_POLY_SET::POLYGON& outline = Polygon( 0 ); SHAPE_POLY_SET holesBuffer; // Move holes stored in outline to holesBuffer: // The first SHAPE_LINE_CHAIN is the main outline, others are holes while( outline.size() > 1 ) { holesBuffer.AddOutline( outline.back() ); outline.pop_back(); } Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); // If any hole, substract it to main outline if( holesBuffer.OutlineCount() ) { holesBuffer.Simplify( SHAPE_POLY_SET::PM_FAST ); BooleanSubtract( holesBuffer, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); } RemoveNullSegments(); return OutlineCount(); } const std::string SHAPE_POLY_SET::Format() const { std::stringstream ss; ss << "polyset " << m_polys.size() << "\n"; for( unsigned i = 0; i < m_polys.size(); i++ ) { ss << "poly " << m_polys[i].size() << "\n"; for( unsigned j = 0; j < m_polys[i].size(); j++ ) { ss << m_polys[i][j].PointCount() << "\n"; for( int v = 0; v < m_polys[i][j].PointCount(); v++ ) ss << m_polys[i][j].CPoint( v ).x << " " << m_polys[i][j].CPoint( v ).y << "\n"; } ss << "\n"; } return ss.str(); } bool SHAPE_POLY_SET::Parse( std::stringstream& aStream ) { std::string tmp; aStream >> tmp; if( tmp != "polyset" ) return false; aStream >> tmp; int n_polys = atoi( tmp.c_str() ); if( n_polys < 0 ) return false; for( int i = 0; i < n_polys; i++ ) { POLYGON paths; aStream >> tmp; if( tmp != "poly" ) return false; aStream >> tmp; int n_outlines = atoi( tmp.c_str() ); if( n_outlines < 0 ) return false; for( int j = 0; j < n_outlines; j++ ) { SHAPE_LINE_CHAIN outline; outline.SetClosed( true ); aStream >> tmp; int n_vertices = atoi( tmp.c_str() ); for( int v = 0; v < n_vertices; v++ ) { VECTOR2I p; aStream >> tmp; p.x = atoi( tmp.c_str() ); aStream >> tmp; p.y = atoi( tmp.c_str() ); outline.Append( p ); } paths.push_back( outline ); } m_polys.push_back( paths ); } return true; } const BOX2I SHAPE_POLY_SET::BBox( int aClearance ) const { BOX2I bb; for( unsigned i = 0; i < m_polys.size(); i++ ) { if( i == 0 ) bb = m_polys[i][0].BBox(); else bb.Merge( m_polys[i][0].BBox() ); } bb.Inflate( aClearance ); return bb; } bool SHAPE_POLY_SET::PointOnEdge( const VECTOR2I& aP ) const { // Iterate through all the polygons in the set for( const POLYGON& polygon : m_polys ) { // Iterate through all the line chains in the polygon for( const SHAPE_LINE_CHAIN& lineChain : polygon ) { if( lineChain.PointOnEdge( aP ) ) return true; } } return false; } bool SHAPE_POLY_SET::Collide( const SEG& aSeg, int aClearance ) const { SHAPE_POLY_SET polySet = SHAPE_POLY_SET( *this ); // Inflate the polygon if necessary. if( aClearance > 0 ) { // fixme: the number of arc segments should not be hardcoded polySet.Inflate( aClearance, 8 ); } // We are going to check to see if the segment crosses an external // boundary. However, if the full segment is inside the polyset, this // will not be true. So we first test to see if one of the points is // inside. If true, then we collide if( polySet.Contains( aSeg.A ) ) return true; for( SEGMENT_ITERATOR iterator = polySet.IterateSegmentsWithHoles(); iterator; iterator++ ) { SEG polygonEdge = *iterator; if( polygonEdge.Intersect( aSeg, true ) ) return true; } return false; } bool SHAPE_POLY_SET::Collide( const VECTOR2I& aP, int aClearance ) const { SHAPE_POLY_SET polySet = SHAPE_POLY_SET( *this ); // Inflate the polygon if necessary. if( aClearance > 0 ) { // fixme: the number of arc segments should not be hardcoded polySet.Inflate( aClearance, 8 ); } // There is a collision if and only if the point is inside of the polygon. return polySet.Contains( aP ); } void SHAPE_POLY_SET::RemoveAllContours() { m_polys.clear(); } void SHAPE_POLY_SET::RemoveContour( int aContourIdx, int aPolygonIdx ) { // Default polygon is the last one if( aPolygonIdx < 0 ) aPolygonIdx += m_polys.size(); m_polys[aPolygonIdx].erase( m_polys[aPolygonIdx].begin() + aContourIdx ); } int SHAPE_POLY_SET::RemoveNullSegments() { int removed = 0; ITERATOR iterator = IterateWithHoles(); VECTOR2I contourStart = *iterator; VECTOR2I segmentStart, segmentEnd; VERTEX_INDEX indexStart; while( iterator ) { // Obtain first point and its index segmentStart = *iterator; indexStart = iterator.GetIndex(); // Obtain last point if( iterator.IsEndContour() ) { segmentEnd = contourStart; // Advance iterator++; if( iterator ) contourStart = *iterator; } else { // Advance iterator++; if( iterator ) segmentEnd = *iterator; } // Remove segment start if both points are equal if( segmentStart == segmentEnd ) { RemoveVertex( indexStart ); removed++; // Advance the iterator one position, as there is one vertex less. if( iterator ) iterator++; } } return removed; } void SHAPE_POLY_SET::DeletePolygon( int aIdx ) { m_polys.erase( m_polys.begin() + aIdx ); } void SHAPE_POLY_SET::Append( const SHAPE_POLY_SET& aSet ) { m_polys.insert( m_polys.end(), aSet.m_polys.begin(), aSet.m_polys.end() ); } void SHAPE_POLY_SET::Append( const VECTOR2I& aP, int aOutline, int aHole ) { Append( aP.x, aP.y, aOutline, aHole ); } bool SHAPE_POLY_SET::CollideVertex( const VECTOR2I& aPoint, SHAPE_POLY_SET::VERTEX_INDEX& aClosestVertex, int aClearance ) { // Shows whether there was a collision bool collision = false; // Difference vector between each vertex and aPoint. VECTOR2D delta; double distance, clearance; // Convert clearance to double for precission when comparing distances clearance = aClearance; for( ITERATOR iterator = IterateWithHoles(); iterator; iterator++ ) { // Get the difference vector between current vertex and aPoint delta = *iterator - aPoint; // Compute distance distance = delta.EuclideanNorm(); // Check for collisions if( distance <= clearance ) { collision = true; // Update aClearance to look for closer vertices clearance = distance; // Store the indices that identify the vertex aClosestVertex = iterator.GetIndex(); } } return collision; } bool SHAPE_POLY_SET::CollideEdge( const VECTOR2I& aPoint, SHAPE_POLY_SET::VERTEX_INDEX& aClosestVertex, int aClearance ) { // Shows whether there was a collision bool collision = false; SEGMENT_ITERATOR iterator; for( iterator = IterateSegmentsWithHoles(); iterator; iterator++ ) { SEG currentSegment = *iterator; int distance = currentSegment.Distance( aPoint ); // Check for collisions if( distance <= aClearance ) { collision = true; // Update aClearance to look for closer edges aClearance = distance; // Store the indices that identify the vertex aClosestVertex = iterator.GetIndex(); } } return collision; } bool SHAPE_POLY_SET::Contains( const VECTOR2I& aP, int aSubpolyIndex, bool aIgnoreHoles ) const { if( m_polys.size() == 0 ) // empty set? return false; // If there is a polygon specified, check the condition against that polygon if( aSubpolyIndex >= 0 ) return containsSingle( aP, aSubpolyIndex, aIgnoreHoles ); // In any other case, check it against all polygons in the set for( int polygonIdx = 0; polygonIdx < OutlineCount(); polygonIdx++ ) { if( containsSingle( aP, polygonIdx, aIgnoreHoles ) ) return true; } return false; } void SHAPE_POLY_SET::RemoveVertex( int aGlobalIndex ) { VERTEX_INDEX index; // Assure the to be removed vertex exists, abort otherwise if( GetRelativeIndices( aGlobalIndex, &index ) ) RemoveVertex( index ); else throw( std::out_of_range( "aGlobalIndex-th vertex does not exist" ) ); } void SHAPE_POLY_SET::RemoveVertex( VERTEX_INDEX aIndex ) { m_polys[aIndex.m_polygon][aIndex.m_contour].Remove( aIndex.m_vertex ); } bool SHAPE_POLY_SET::containsSingle( const VECTOR2I& aP, int aSubpolyIndex, bool aIgnoreHoles ) const { // Check that the point is inside the outline if( pointInPolygon( aP, m_polys[aSubpolyIndex][0] ) ) { if( !aIgnoreHoles ) { // Check that the point is not in any of the holes for( int holeIdx = 0; holeIdx < HoleCount( aSubpolyIndex ); holeIdx++ ) { const SHAPE_LINE_CHAIN hole = CHole( aSubpolyIndex, holeIdx ); // If the point is inside a hole (and not on its edge), // it is outside of the polygon if( pointInPolygon( aP, hole ) && !hole.PointOnEdge( aP ) ) return false; } } return true; } return false; } bool SHAPE_POLY_SET::pointInPolygon( const VECTOR2I& aP, const SHAPE_LINE_CHAIN& aPath ) const { return aPath.PointInside( aP ); } void SHAPE_POLY_SET::Move( const VECTOR2I& aVector ) { for( POLYGON& poly : m_polys ) { for( SHAPE_LINE_CHAIN& path : poly ) { path.Move( aVector ); } } } void SHAPE_POLY_SET::Rotate( double aAngle, const VECTOR2I& aCenter ) { for( POLYGON& poly : m_polys ) { for( SHAPE_LINE_CHAIN& path : poly ) { path.Rotate( aAngle, aCenter ); } } } int SHAPE_POLY_SET::TotalVertices() const { int c = 0; for( const POLYGON& poly : m_polys ) { for( const SHAPE_LINE_CHAIN& path : poly ) { c += path.PointCount(); } } return c; } SHAPE_POLY_SET::POLYGON SHAPE_POLY_SET::ChamferPolygon( unsigned int aDistance, int aIndex ) { return chamferFilletPolygon( CORNER_MODE::CHAMFERED, aDistance, aIndex ); } SHAPE_POLY_SET::POLYGON SHAPE_POLY_SET::FilletPolygon( unsigned int aRadius, int aErrorMax, int aIndex ) { return chamferFilletPolygon( CORNER_MODE::FILLETED, aRadius, aIndex, aErrorMax ); } int SHAPE_POLY_SET::DistanceToPolygon( VECTOR2I aPoint, int aPolygonIndex ) { // We calculate the min dist between the segment and each outline segment // However, if the segment to test is inside the outline, and does not cross // any edge, it can be seen outside the polygon. // Therefore test if a segment end is inside ( testing only one end is enough ) if( containsSingle( aPoint, aPolygonIndex ) ) return 0; SEGMENT_ITERATOR iterator = IterateSegmentsWithHoles( aPolygonIndex ); SEG polygonEdge = *iterator; int minDistance = polygonEdge.Distance( aPoint ); for( iterator++; iterator && minDistance > 0; iterator++ ) { polygonEdge = *iterator; int currentDistance = polygonEdge.Distance( aPoint ); if( currentDistance < minDistance ) minDistance = currentDistance; } return minDistance; } int SHAPE_POLY_SET::DistanceToPolygon( SEG aSegment, int aPolygonIndex, int aSegmentWidth ) { // We calculate the min dist between the segment and each outline segment // However, if the segment to test is inside the outline, and does not cross // any edge, it can be seen outside the polygon. // Therefore test if a segment end is inside ( testing only one end is enough ) if( containsSingle( aSegment.A, aPolygonIndex ) ) return 0; SEGMENT_ITERATOR iterator = IterateSegmentsWithHoles( aPolygonIndex ); SEG polygonEdge = *iterator; int minDistance = polygonEdge.Distance( aSegment ); for( iterator++; iterator && minDistance > 0; iterator++ ) { polygonEdge = *iterator; int currentDistance = polygonEdge.Distance( aSegment ); if( currentDistance < minDistance ) minDistance = currentDistance; } // Take into account the width of the segment if( aSegmentWidth > 0 ) minDistance -= aSegmentWidth / 2; // Return the maximum of minDistance and zero return minDistance < 0 ? 0 : minDistance; } int SHAPE_POLY_SET::Distance( VECTOR2I aPoint ) { int currentDistance; int minDistance = DistanceToPolygon( aPoint, 0 ); // Iterate through all the polygons and get the minimum distance. for( unsigned int polygonIdx = 1; polygonIdx < m_polys.size(); polygonIdx++ ) { currentDistance = DistanceToPolygon( aPoint, polygonIdx ); if( currentDistance < minDistance ) minDistance = currentDistance; } return minDistance; } int SHAPE_POLY_SET::Distance( const SEG& aSegment, int aSegmentWidth ) { int currentDistance; int minDistance = DistanceToPolygon( aSegment, 0, aSegmentWidth ); // Iterate through all the polygons and get the minimum distance. for( unsigned int polygonIdx = 1; polygonIdx < m_polys.size(); polygonIdx++ ) { currentDistance = DistanceToPolygon( aSegment, polygonIdx, aSegmentWidth ); if( currentDistance < minDistance ) minDistance = currentDistance; } return minDistance; } bool SHAPE_POLY_SET::IsVertexInHole( int aGlobalIdx ) { VERTEX_INDEX index; // Get the polygon and contour where the vertex is. If the vertex does not exist, return false if( !GetRelativeIndices( aGlobalIdx, &index ) ) return false; // The contour is a hole if its index is greater than zero return index.m_contour > 0; } SHAPE_POLY_SET SHAPE_POLY_SET::Chamfer( int aDistance ) { SHAPE_POLY_SET chamfered; for( unsigned int polygonIdx = 0; polygonIdx < m_polys.size(); polygonIdx++ ) chamfered.m_polys.push_back( ChamferPolygon( aDistance, polygonIdx ) ); return chamfered; } SHAPE_POLY_SET SHAPE_POLY_SET::Fillet( int aRadius, int aErrorMax ) { SHAPE_POLY_SET filleted; for( size_t polygonIdx = 0; polygonIdx < m_polys.size(); polygonIdx++ ) filleted.m_polys.push_back( FilletPolygon( aRadius, aErrorMax, polygonIdx ) ); return filleted; } SHAPE_POLY_SET::POLYGON SHAPE_POLY_SET::chamferFilletPolygon( CORNER_MODE aMode, unsigned int aDistance, int aIndex, int aErrorMax ) { // Null segments create serious issues in calculations. Remove them: RemoveNullSegments(); SHAPE_POLY_SET::POLYGON currentPoly = Polygon( aIndex ); SHAPE_POLY_SET::POLYGON newPoly; // If the chamfering distance is zero, then the polygon remain intact. if( aDistance == 0 ) { return currentPoly; } // Iterate through all the contours (outline and holes) of the polygon. for( SHAPE_LINE_CHAIN& currContour : currentPoly ) { // Generate a new contour in the new polygon SHAPE_LINE_CHAIN newContour; // Iterate through the vertices of the contour for( int currVertex = 0; currVertex < currContour.PointCount(); currVertex++ ) { // Current vertex int x1 = currContour.Point( currVertex ).x; int y1 = currContour.Point( currVertex ).y; // Indices for previous and next vertices. int prevVertex; int nextVertex; // Previous and next vertices indices computation. Necessary to manage the edge cases. // Previous vertex is the last one if the current vertex is the first one prevVertex = currVertex == 0 ? currContour.PointCount() - 1 : currVertex - 1; // next vertex is the first one if the current vertex is the last one. nextVertex = currVertex == currContour.PointCount() - 1 ? 0 : currVertex + 1; // Previous vertex computation double xa = currContour.Point( prevVertex ).x - x1; double ya = currContour.Point( prevVertex ).y - y1; // Next vertex computation double xb = currContour.Point( nextVertex ).x - x1; double yb = currContour.Point( nextVertex ).y - y1; // Compute the new distances double lena = hypot( xa, ya ); double lenb = hypot( xb, yb ); // Make the final computations depending on the mode selected, chamfered or filleted. if( aMode == CORNER_MODE::CHAMFERED ) { double distance = aDistance; // Chamfer one half of an edge at most if( 0.5 * lena < distance ) distance = 0.5 * lena; if( 0.5 * lenb < distance ) distance = 0.5 * lenb; int nx1 = round_nearest( distance * xa / lena ); int ny1 = round_nearest( distance * ya / lena ); newContour.Append( x1 + nx1, y1 + ny1 ); int nx2 = round_nearest( distance * xb / lenb ); int ny2 = round_nearest( distance * yb / lenb ); newContour.Append( x1 + nx2, y1 + ny2 ); } else // CORNER_MODE = FILLETED { double cosine = ( xa * xb + ya * yb ) / ( lena * lenb ); double radius = aDistance; double denom = sqrt( 2.0 / ( 1 + cosine ) - 1 ); // Do nothing in case of parallel edges if( std::isinf( denom ) ) continue; // Limit rounding distance to one half of an edge if( 0.5 * lena * denom < radius ) radius = 0.5 * lena * denom; if( 0.5 * lenb * denom < radius ) radius = 0.5 * lenb * denom; // Calculate fillet arc absolute center point (xc, yx) double k = radius / sqrt( .5 * ( 1 - cosine ) ); double lenab = sqrt( ( xa / lena + xb / lenb ) * ( xa / lena + xb / lenb ) + ( ya / lena + yb / lenb ) * ( ya / lena + yb / lenb ) ); double xc = x1 + k * ( xa / lena + xb / lenb ) / lenab; double yc = y1 + k * ( ya / lena + yb / lenb ) / lenab; // Calculate arc start and end vectors k = radius / sqrt( 2 / ( 1 + cosine ) - 1 ); double xs = x1 + k * xa / lena - xc; double ys = y1 + k * ya / lena - yc; double xe = x1 + k * xb / lenb - xc; double ye = y1 + k * yb / lenb - yc; // Cosine of arc angle double argument = ( xs * xe + ys * ye ) / ( radius * radius ); // Make sure the argument is in [-1,1], interval in which the acos function is // defined if( argument < -1 ) argument = -1; else if( argument > 1 ) argument = 1; double arcAngle = acos( argument ); double arcAngleDegrees = arcAngle * 180.0 / M_PI; int segments = GetArcToSegmentCount( radius, aErrorMax, arcAngleDegrees ); double deltaAngle = arcAngle / segments; double startAngle = atan2( -ys, xs ); // Flip arc for inner corners if( xa * yb - ya * xb <= 0 ) deltaAngle *= -1; double nx = xc + xs; double ny = yc + ys; newContour.Append( round_nearest( nx ), round_nearest( ny ) ); // Store the previous added corner to make a sanity check int prevX = round_nearest( nx ); int prevY = round_nearest( ny ); for( int j = 0; j < segments; j++ ) { nx = xc + cos( startAngle + ( j + 1 ) * deltaAngle ) * radius; ny = yc - sin( startAngle + ( j + 1 ) * deltaAngle ) * radius; // Sanity check: the rounding can produce repeated corners; do not add them. if( round_nearest( nx ) != prevX || round_nearest( ny ) != prevY ) { newContour.Append( round_nearest( nx ), round_nearest( ny ) ); prevX = round_nearest( nx ); prevY = round_nearest( ny ); } } } } // Close the current contour and add it the new polygon newContour.SetClosed( true ); newPoly.push_back( newContour ); } return newPoly; } SHAPE_POLY_SET &SHAPE_POLY_SET::operator=( const SHAPE_POLY_SET& aOther ) { static_cast(*this) = aOther; m_polys = aOther.m_polys; // reset poly cache: m_hash = MD5_HASH{}; m_triangulationValid = false; m_triangulatedPolys.clear(); return *this; } MD5_HASH SHAPE_POLY_SET::GetHash() const { if( !m_hash.IsValid() ) return checksum(); return m_hash; } bool SHAPE_POLY_SET::IsTriangulationUpToDate() const { if( !m_triangulationValid ) return false; if( !m_hash.IsValid() ) return false; auto hash = checksum(); return hash == m_hash; } void SHAPE_POLY_SET::CacheTriangulation() { bool recalculate = !m_hash.IsValid(); MD5_HASH hash; if( !m_triangulationValid ) recalculate = true; if( !recalculate ) { hash = checksum(); if( m_hash != hash ) { m_hash = hash; recalculate = true; } } if( !recalculate ) return; SHAPE_POLY_SET tmpSet = *this; if( tmpSet.HasHoles() ) tmpSet.Fracture( PM_FAST ); m_triangulatedPolys.clear(); m_triangulationValid = true; while( tmpSet.OutlineCount() > 0 ) { m_triangulatedPolys.push_back( std::make_unique() ); PolygonTriangulation tess( *m_triangulatedPolys.back() ); // If the tesselation fails, we re-fracture the polygon, which will // first simplify the system before fracturing and removing the holes // This may result in multiple, disjoint polygons. if( !tess.TesselatePolygon( tmpSet.Polygon( 0 ).front() ) ) { tmpSet.Fracture( PM_FAST ); m_triangulationValid = false; continue; } tmpSet.DeletePolygon( 0 ); m_triangulationValid = true; } if( m_triangulationValid ) m_hash = checksum(); } MD5_HASH SHAPE_POLY_SET::checksum() const { MD5_HASH hash; hash.Hash( m_polys.size() ); for( const auto& outline : m_polys ) { hash.Hash( outline.size() ); for( const auto& lc : outline ) { hash.Hash( lc.PointCount() ); for( int i = 0; i < lc.PointCount(); i++ ) { hash.Hash( lc.CPoint( i ).x ); hash.Hash( lc.CPoint( i ).y ); } } } hash.Finalize(); return hash; } bool SHAPE_POLY_SET::HasTouchingHoles() const { for( int i = 0; i < OutlineCount(); i++ ) { if( hasTouchingHoles( CPolygon( i ) ) ) { return true; } } return false; } bool SHAPE_POLY_SET::hasTouchingHoles( const POLYGON& aPoly ) const { std::set< long long > ptHashes; for( const auto& lc : aPoly ) { for( const VECTOR2I& pt : lc.CPoints() ) { const long long ptHash = (long long) pt.x << 32 | pt.y; if( ptHashes.count( ptHash ) > 0 ) { return true; } ptHashes.insert( ptHash ); } } return false; }