/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017 CERN * Copyright (C) 2017-2021 Kicad Developers, see AUTHORS.txt for contributors. * * @author Alejandro GarcĂ­a Montoro * @author Maciej Suminski * @author Russell Oliver * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Eagle schematic axes are aligned with x increasing left to right and Y increasing bottom to top // KiCad schematic axes are aligned with x increasing left to right and Y increasing top to bottom. using namespace std; /** * Map of EAGLE pin type values to KiCad pin type values */ static const std::map pinDirectionsMap = { { "sup", ELECTRICAL_PINTYPE::PT_POWER_IN }, { "pas", ELECTRICAL_PINTYPE::PT_PASSIVE }, { "out", ELECTRICAL_PINTYPE::PT_OUTPUT }, { "in", ELECTRICAL_PINTYPE::PT_INPUT }, { "nc", ELECTRICAL_PINTYPE::PT_NC }, { "io", ELECTRICAL_PINTYPE::PT_BIDI }, { "oc", ELECTRICAL_PINTYPE::PT_OPENCOLLECTOR }, { "hiz", ELECTRICAL_PINTYPE::PT_TRISTATE }, { "pwr", ELECTRICAL_PINTYPE::PT_POWER_IN }, }; /** * Provide an easy access to the children of an XML node via their names. * * @param aCurrentNode is a pointer to a wxXmlNode, whose children will be mapped. * @param aName the name of the specific child names to be counted. * @return number of children with the give node name. */ static int countChildren( wxXmlNode* aCurrentNode, const wxString& aName ) { // Map node_name -> node_pointer int count = 0; // Loop through all children counting them if they match the given name aCurrentNode = aCurrentNode->GetChildren(); while( aCurrentNode ) { if( aCurrentNode->GetName() == aName ) count++; // Get next child aCurrentNode = aCurrentNode->GetNext(); } return count; } ///< Compute a bounding box for all items in a schematic sheet static EDA_RECT getSheetBbox( SCH_SHEET* aSheet ) { EDA_RECT bbox; for( auto item : aSheet->GetScreen()->Items() ) bbox.Merge( item->GetBoundingBox() ); return bbox; } ///< Extract the net name part from a pin name (e.g. return 'GND' for pin named 'GND@2') static inline wxString extractNetName( const wxString& aPinName ) { return aPinName.BeforeFirst( '@' ); } wxString SCH_EAGLE_PLUGIN::getLibName() { if( m_libName.IsEmpty() ) { // Try to come up with a meaningful name m_libName = m_schematic->Prj().GetProjectName(); if( m_libName.IsEmpty() ) { wxFileName fn( m_rootSheet->GetFileName() ); m_libName = fn.GetName(); } if( m_libName.IsEmpty() ) m_libName = "noname"; m_libName += "-eagle-import"; m_libName = LIB_ID::FixIllegalChars( m_libName, true ); } return m_libName; } wxFileName SCH_EAGLE_PLUGIN::getLibFileName() { wxFileName fn( m_schematic->Prj().GetProjectPath(), getLibName(), KiCadSymbolLibFileExtension ); return fn; } void SCH_EAGLE_PLUGIN::loadLayerDefs( wxXmlNode* aLayers ) { std::vector eagleLayers; // Get the first layer and iterate wxXmlNode* layerNode = aLayers->GetChildren(); while( layerNode ) { ELAYER elayer( layerNode ); eagleLayers.push_back( elayer ); layerNode = layerNode->GetNext(); } // match layers based on their names for( const auto& elayer : eagleLayers ) { /** * Layers in KiCad schematics are not actually layers, but abstract groups mainly used to * decide item colors. * * * * * * * * * * * * */ if( elayer.name == "Nets" ) { m_layerMap[elayer.number] = LAYER_WIRE; } else if( elayer.name == "Info" || elayer.name == "Guide" ) { m_layerMap[elayer.number] = LAYER_NOTES; } else if( elayer.name == "Busses" ) { m_layerMap[elayer.number] = LAYER_BUS; } } } SCH_LAYER_ID SCH_EAGLE_PLUGIN::kiCadLayer( int aEagleLayer ) { auto it = m_layerMap.find( aEagleLayer ); return it == m_layerMap.end() ? LAYER_NOTES : it->second; } // Return the KiCad component orientation based on eagle rotation degrees. static COMPONENT_ORIENTATION_T kiCadComponentRotation( float eagleDegrees ) { int roti = int( eagleDegrees ); switch( roti ) { default: wxASSERT_MSG( false, wxString::Format( "Unhandled orientation (%d degrees)", roti ) ); KI_FALLTHROUGH; case 0: return CMP_ORIENT_0; case 90: return CMP_ORIENT_90; case 180: return CMP_ORIENT_180; case 270: return CMP_ORIENT_270; } return CMP_ORIENT_0; } // Calculate text alignment based on the given Eagle text alignment parameters. static void eagleToKicadAlignment( EDA_TEXT* aText, int aEagleAlignment, int aRelDegress, bool aMirror, bool aSpin, int aAbsDegress ) { int align = aEagleAlignment; if( aRelDegress == 90 ) { aText->SetTextAngle( 900 ); } else if( aRelDegress == 180 ) align = -align; else if( aRelDegress == 270 ) { aText->SetTextAngle( 900 ); align = -align; } if( aMirror == true ) { if( aAbsDegress == 90 || aAbsDegress == 270 ) { if( align == ETEXT::BOTTOM_RIGHT ) align = ETEXT::TOP_RIGHT; else if( align == ETEXT::BOTTOM_LEFT ) align = ETEXT::TOP_LEFT; else if( align == ETEXT::TOP_LEFT ) align = ETEXT::BOTTOM_LEFT; else if( align == ETEXT::TOP_RIGHT ) align = ETEXT::BOTTOM_RIGHT; } else if( aAbsDegress == 0 || aAbsDegress == 180 ) { if( align == ETEXT::BOTTOM_RIGHT ) align = ETEXT::BOTTOM_LEFT; else if( align == ETEXT::BOTTOM_LEFT ) align = ETEXT::BOTTOM_RIGHT; else if( align == ETEXT::TOP_LEFT ) align = ETEXT::TOP_RIGHT; else if( align == ETEXT::TOP_RIGHT ) align = ETEXT::TOP_LEFT; else if( align == ETEXT::CENTER_LEFT ) align = ETEXT::CENTER_RIGHT; else if( align == ETEXT::CENTER_RIGHT ) align = ETEXT::CENTER_LEFT; } } switch( align ) { case ETEXT::CENTER: aText->SetHorizJustify( GR_TEXT_HJUSTIFY_CENTER ); aText->SetVertJustify( GR_TEXT_VJUSTIFY_CENTER ); break; case ETEXT::CENTER_LEFT: aText->SetHorizJustify( GR_TEXT_HJUSTIFY_LEFT ); aText->SetVertJustify( GR_TEXT_VJUSTIFY_CENTER ); break; case ETEXT::CENTER_RIGHT: aText->SetHorizJustify( GR_TEXT_HJUSTIFY_RIGHT ); aText->SetVertJustify( GR_TEXT_VJUSTIFY_CENTER ); break; case ETEXT::TOP_CENTER: aText->SetHorizJustify( GR_TEXT_HJUSTIFY_CENTER ); aText->SetVertJustify( GR_TEXT_VJUSTIFY_TOP ); break; case ETEXT::TOP_LEFT: aText->SetHorizJustify( GR_TEXT_HJUSTIFY_LEFT ); aText->SetVertJustify( GR_TEXT_VJUSTIFY_TOP ); break; case ETEXT::TOP_RIGHT: aText->SetHorizJustify( GR_TEXT_HJUSTIFY_RIGHT ); aText->SetVertJustify( GR_TEXT_VJUSTIFY_TOP ); break; case ETEXT::BOTTOM_CENTER: aText->SetHorizJustify( GR_TEXT_HJUSTIFY_CENTER ); aText->SetVertJustify( GR_TEXT_VJUSTIFY_BOTTOM ); break; case ETEXT::BOTTOM_LEFT: aText->SetHorizJustify( GR_TEXT_HJUSTIFY_LEFT ); aText->SetVertJustify( GR_TEXT_VJUSTIFY_BOTTOM ); break; case ETEXT::BOTTOM_RIGHT: aText->SetHorizJustify( GR_TEXT_HJUSTIFY_RIGHT ); aText->SetVertJustify( GR_TEXT_VJUSTIFY_BOTTOM ); break; default: aText->SetHorizJustify( GR_TEXT_HJUSTIFY_RIGHT ); aText->SetVertJustify( GR_TEXT_VJUSTIFY_BOTTOM ); break; } } SCH_EAGLE_PLUGIN::SCH_EAGLE_PLUGIN() { m_kiway = nullptr; m_rootSheet = nullptr; m_currentSheet = nullptr; m_schematic = nullptr; } SCH_EAGLE_PLUGIN::~SCH_EAGLE_PLUGIN() { } const wxString SCH_EAGLE_PLUGIN::GetName() const { return "EAGLE"; } const wxString SCH_EAGLE_PLUGIN::GetFileExtension() const { return "sch"; } const wxString SCH_EAGLE_PLUGIN::GetLibraryFileExtension() const { return "lbr"; } int SCH_EAGLE_PLUGIN::GetModifyHash() const { return 0; } SCH_SHEET* SCH_EAGLE_PLUGIN::Load( const wxString& aFileName, SCHEMATIC* aSchematic, SCH_SHEET* aAppendToMe, const PROPERTIES* aProperties ) { wxASSERT( !aFileName || aSchematic != nullptr ); LOCALE_IO toggle; // toggles on, then off, the C locale. // Load the document wxXmlDocument xmlDocument; m_filename = aFileName; m_schematic = aSchematic; if( !xmlDocument.Load( m_filename.GetFullPath() ) ) { THROW_IO_ERROR( wxString::Format( _( "Unable to read file \"%s\"" ), m_filename.GetFullPath() ) ); } // Delete on exception, if I own m_rootSheet, according to aAppendToMe unique_ptr deleter( aAppendToMe ? nullptr : m_rootSheet ); wxFileName newFilename( m_filename ); newFilename.SetExt( "kicad_sch" ); if( aAppendToMe ) { wxCHECK_MSG( aSchematic->IsValid(), nullptr, "Can't append to a schematic with no root!" ); m_rootSheet = &aSchematic->Root(); } else { m_rootSheet = new SCH_SHEET( aSchematic ); m_rootSheet->SetFileName( newFilename.GetFullPath() ); } if( !m_rootSheet->GetScreen() ) { SCH_SCREEN* screen = new SCH_SCREEN( m_schematic ); screen->SetFileName( newFilename.GetFullPath() ); m_rootSheet->SetScreen( screen ); } SYMBOL_LIB_TABLE* libTable = m_schematic->Prj().SchSymbolLibTable(); wxCHECK_MSG( libTable, NULL, "Could not load symbol lib table." ); m_pi.set( SCH_IO_MGR::FindPlugin( SCH_IO_MGR::SCH_KICAD ) ); m_properties = std::make_unique(); ( *m_properties )[SCH_LEGACY_PLUGIN::PropBuffering] = ""; /// @note No check is being done here to see if the existing symbol library exists so this /// will overwrite the existing one. if( !libTable->HasLibrary( getLibName() ) ) { // Create a new empty symbol library. m_pi->CreateSymbolLib( getLibFileName().GetFullPath() ); wxString libTableUri = "${KIPRJMOD}/" + getLibFileName().GetFullName(); // Add the new library to the project symbol library table. libTable->InsertRow( new SYMBOL_LIB_TABLE_ROW( getLibName(), libTableUri, wxString( "KiCad" ) ) ); // Save project symbol library table. wxFileName fn( m_schematic->Prj().GetProjectPath(), SYMBOL_LIB_TABLE::GetSymbolLibTableFileName() ); // So output formatter goes out of scope and closes the file before reloading. { FILE_OUTPUTFORMATTER formatter( fn.GetFullPath() ); libTable->Format( &formatter, 0 ); } // Reload the symbol library table. m_schematic->Prj().SetElem( PROJECT::ELEM_SYMBOL_LIB_TABLE, NULL ); m_schematic->Prj().SchSymbolLibTable(); } // Retrieve the root as current node wxXmlNode* currentNode = xmlDocument.GetRoot(); // If the attribute is found, store the Eagle version; // otherwise, store the dummy "0.0" version. m_version = currentNode->GetAttribute( "version", "0.0" ); // Map all children into a readable dictionary NODE_MAP children = MapChildren( currentNode ); // Load drawing loadDrawing( children["drawing"] ); m_pi->SaveLibrary( getLibFileName().GetFullPath() ); return m_rootSheet; } void SCH_EAGLE_PLUGIN::loadDrawing( wxXmlNode* aDrawingNode ) { // Map all children into a readable dictionary NODE_MAP drawingChildren = MapChildren( aDrawingNode ); // Board nodes should not appear in .sch files // wxXmlNode* board = drawingChildren["board"] // wxXmlNode* grid = drawingChildren["grid"] auto layers = drawingChildren["layers"]; if( layers ) loadLayerDefs( layers ); // wxXmlNode* library = drawingChildren["library"] // wxXmlNode* settings = drawingChildren["settings"] // Load schematic auto schematic = drawingChildren["schematic"]; if( schematic ) loadSchematic( schematic ); } void SCH_EAGLE_PLUGIN::countNets( wxXmlNode* aSchematicNode ) { // Map all children into a readable dictionary NODE_MAP schematicChildren = MapChildren( aSchematicNode ); // Loop through all the sheets wxXmlNode* sheetNode = getChildrenNodes( schematicChildren, "sheets" ); while( sheetNode ) { NODE_MAP sheetChildren = MapChildren( sheetNode ); // Loop through all nets // From the DTD: "Net is an electrical connection in a schematic." wxXmlNode* netNode = getChildrenNodes( sheetChildren, "nets" ); while( netNode ) { wxString netName = netNode->GetAttribute( "name" ); if( m_netCounts.count( netName ) ) m_netCounts[netName] = m_netCounts[netName] + 1; else m_netCounts[netName] = 1; // Get next net netNode = netNode->GetNext(); } sheetNode = sheetNode->GetNext(); } } void SCH_EAGLE_PLUGIN::loadSchematic( wxXmlNode* aSchematicNode ) { // Map all children into a readable dictionary NODE_MAP schematicChildren = MapChildren( aSchematicNode ); auto partNode = getChildrenNodes( schematicChildren, "parts" ); auto libraryNode = getChildrenNodes( schematicChildren, "libraries" ); auto sheetNode = getChildrenNodes( schematicChildren, "sheets" ); if( !partNode || !libraryNode || !sheetNode ) return; while( partNode ) { std::unique_ptr epart = std::make_unique( partNode ); // N.B. Eagle parts are case-insensitive in matching but we keep the display case m_partlist[epart->name.Upper()] = std::move( epart ); partNode = partNode->GetNext(); } // Loop through all the libraries while( libraryNode ) { // Read the library name wxString libName = libraryNode->GetAttribute( "name" ); EAGLE_LIBRARY* elib = &m_eagleLibs[libName]; elib->name = libName; loadLibrary( libraryNode, &m_eagleLibs[libName] ); libraryNode = libraryNode->GetNext(); } m_pi->SaveLibrary( getLibFileName().GetFullPath() ); // find all nets and count how many sheets they appear on. // local labels will be used for nets found only on that sheet. countNets( aSchematicNode ); // Loop through all the sheets int sheet_count = countChildren( sheetNode->GetParent(), "sheet" ); // If eagle schematic has multiple sheets then create corresponding subsheets on the root sheet if( sheet_count > 1 ) { int x, y, i; i = 1; x = 1; y = 1; while( sheetNode ) { wxPoint pos = wxPoint( x * Mils2iu( 1000 ), y * Mils2iu( 1000 ) ); std::unique_ptr sheet = std::make_unique( m_rootSheet, pos ); SCH_SCREEN* screen = new SCH_SCREEN( m_schematic ); sheet->SetScreen( screen ); sheet->GetScreen()->SetFileName( sheet->GetFileName() ); m_currentSheet = sheet.get(); loadSheet( sheetNode, i ); m_rootSheet->GetScreen()->Append( sheet.release() ); sheetNode = sheetNode->GetNext(); x += 2; if( x > 10 ) // start next row { x = 1; y += 2; } i++; } } else { while( sheetNode ) { m_currentSheet = m_rootSheet; loadSheet( sheetNode, 0 ); sheetNode = sheetNode->GetNext(); } } // Handle the missing component units that need to be instantiated // to create the missing implicit connections // Calculate the already placed items bounding box and the page size to determine // placement for the new components wxSize pageSizeIU = m_rootSheet->GetScreen()->GetPageSettings().GetSizeIU(); EDA_RECT sheetBbox = getSheetBbox( m_rootSheet ); wxPoint newCmpPosition( sheetBbox.GetLeft(), sheetBbox.GetBottom() ); int maxY = sheetBbox.GetY(); SCH_SHEET_PATH sheetpath; m_rootSheet->LocatePathOfScreen( m_rootSheet->GetScreen(), &sheetpath ); for( auto& cmp : m_missingCmps ) { const SCH_COMPONENT* origCmp = cmp.second.cmp; for( auto unitEntry : cmp.second.units ) { if( unitEntry.second == false ) continue; // unit has been already processed // Instantiate the missing component unit int unit = unitEntry.first; const wxString reference = origCmp->GetField( REFERENCE_FIELD )->GetText(); std::unique_ptr component( (SCH_COMPONENT*) origCmp->Duplicate() ); component->SetUnitSelection( &sheetpath, unit ); component->SetUnit( unit ); component->SetOrientation( 0 ); component->AddHierarchicalReference( sheetpath.Path(), reference, unit ); // Calculate the placement position EDA_RECT cmpBbox = component->GetBoundingBox(); int posY = newCmpPosition.y + cmpBbox.GetHeight(); component->SetPosition( wxPoint( newCmpPosition.x, posY ) ); newCmpPosition.x += cmpBbox.GetWidth(); maxY = std::max( maxY, posY ); if( newCmpPosition.x >= pageSizeIU.GetWidth() ) // reached the page boundary? newCmpPosition = wxPoint( sheetBbox.GetLeft(), maxY ); // then start a new row // Add the global net labels to recreate the implicit connections addImplicitConnections( component.get(), m_rootSheet->GetScreen(), false ); m_rootSheet->GetScreen()->Append( component.release() ); } } m_missingCmps.clear(); } void SCH_EAGLE_PLUGIN::loadSheet( wxXmlNode* aSheetNode, int aSheetIndex ) { // Map all children into a readable dictionary NODE_MAP sheetChildren = MapChildren( aSheetNode ); // Get description node wxXmlNode* descriptionNode = getChildrenNodes( sheetChildren, "description" ); wxString des; std::string filename; SCH_FIELD& sheetNameField = m_currentSheet->GetFields()[SHEETNAME]; SCH_FIELD& filenameField = m_currentSheet->GetFields()[SHEETFILENAME]; if( descriptionNode ) { des = descriptionNode->GetContent(); des.Replace( "\n", "_", true ); sheetNameField.SetText( des ); filename = des.ToStdString(); } else { filename = wxString::Format( "%s_%d", m_filename.GetName(), aSheetIndex ); sheetNameField.SetText( filename ); } ReplaceIllegalFileNameChars( &filename ); replace( filename.begin(), filename.end(), ' ', '_' ); wxString fn = wxString( filename + ".kicad_sch" ); filenameField.SetText( fn ); wxFileName fileName( fn ); m_currentSheet->GetScreen()->SetFileName( fileName.GetFullPath() ); // Loop through all buses // From the DTD: "Buses receive names which determine which signals they include. // A bus is a drawing object. It does not create any electrical connections. // These are always created by means of the nets and their names." wxXmlNode* busNode = getChildrenNodes( sheetChildren, "busses" ); while( busNode ) { // Get the bus name wxString busName = translateEagleBusName( busNode->GetAttribute( "name" ) ); // Load segments of this bus loadSegments( busNode, busName, wxString() ); // Get next bus busNode = busNode->GetNext(); } // Loop through all nets // From the DTD: "Net is an electrical connection in a schematic." wxXmlNode* netNode = getChildrenNodes( sheetChildren, "nets" ); while( netNode ) { // Get the net name and class wxString netName = netNode->GetAttribute( "name" ); wxString netClass = netNode->GetAttribute( "class" ); // Load segments of this net loadSegments( netNode, netName, netClass ); // Get next net netNode = netNode->GetNext(); } adjustNetLabels(); // needs to be called before addBusEntries() addBusEntries(); // Loop through all instances wxXmlNode* instanceNode = getChildrenNodes( sheetChildren, "instances" ); while( instanceNode ) { loadInstance( instanceNode ); instanceNode = instanceNode->GetNext(); } /* moduleinst is a design block definition and is an EagleCad 8 feature, * * // Loop through all moduleinsts * wxXmlNode* moduleinstNode = getChildrenNodes( sheetChildren, "moduleinsts" ); * * while( moduleinstNode ) * { * loadModuleinst( moduleinstNode ); * moduleinstNode = moduleinstNode->GetNext(); * } */ wxXmlNode* plainNode = getChildrenNodes( sheetChildren, "plain" ); while( plainNode ) { wxString nodeName = plainNode->GetName(); if( nodeName == "text" ) { m_currentSheet->GetScreen()->Append( loadPlainText( plainNode ) ); } else if( nodeName == "wire" ) { m_currentSheet->GetScreen()->Append( loadWire( plainNode ) ); } plainNode = plainNode->GetNext(); } // Calculate the new sheet size. EDA_RECT sheetBoundingBox = getSheetBbox( m_currentSheet ); wxSize targetSheetSize = sheetBoundingBox.GetSize(); targetSheetSize.IncBy( Mils2iu( 1500 ), Mils2iu( 1500 ) ); // Get current Eeschema sheet size. wxSize pageSizeIU = m_currentSheet->GetScreen()->GetPageSettings().GetSizeIU(); PAGE_INFO pageInfo = m_currentSheet->GetScreen()->GetPageSettings(); // Increase if necessary if( pageSizeIU.x < targetSheetSize.x ) pageInfo.SetWidthMils( Iu2Mils( targetSheetSize.x ) ); if( pageSizeIU.y < targetSheetSize.y ) pageInfo.SetHeightMils( Iu2Mils( targetSheetSize.y ) ); // Set the new sheet size. m_currentSheet->GetScreen()->SetPageSettings( pageInfo ); pageSizeIU = m_currentSheet->GetScreen()->GetPageSettings().GetSizeIU(); wxPoint sheetcentre( pageSizeIU.x / 2, pageSizeIU.y / 2 ); wxPoint itemsCentre = sheetBoundingBox.Centre(); // round the translation to nearest 100mil to place it on the grid. wxPoint translation = sheetcentre - itemsCentre; translation.x = translation.x - translation.x % Mils2iu( 100 ); translation.y = translation.y - translation.y % Mils2iu( 100 ); // Add global net labels for the named power input pins in this sheet for( auto item : m_currentSheet->GetScreen()->Items().OfType( SCH_COMPONENT_T ) ) addImplicitConnections( static_cast( item ), m_currentSheet->GetScreen(), true ); m_connPoints.clear(); // Translate the items. std::vector allItems; std::copy( m_currentSheet->GetScreen()->Items().begin(), m_currentSheet->GetScreen()->Items().end(), std::back_inserter( allItems ) ); for( auto item : allItems ) { item->SetPosition( item->GetPosition() + translation ); item->ClearFlags(); m_currentSheet->GetScreen()->Update( item ); } } void SCH_EAGLE_PLUGIN::loadSegments( wxXmlNode* aSegmentsNode, const wxString& netName, const wxString& aNetClass ) { // Loop through all segments wxXmlNode* currentSegment = aSegmentsNode->GetChildren(); SCH_SCREEN* screen = m_currentSheet->GetScreen(); int segmentCount = countChildren( aSegmentsNode, "segment" ); // wxCHECK( screen, [>void<] ); while( currentSegment ) { bool labelled = false; // has a label been added to this continuously connected segment NODE_MAP segmentChildren = MapChildren( currentSegment ); SCH_LINE* firstWire = nullptr; m_segments.emplace_back(); SEG_DESC& segDesc = m_segments.back(); // Loop through all segment children wxXmlNode* segmentAttribute = currentSegment->GetChildren(); while( segmentAttribute ) { if( segmentAttribute->GetName() == "wire" ) { SCH_LINE* wire = loadWire( segmentAttribute ); if( !firstWire ) firstWire = wire; // Test for intersections with other wires SEG thisWire( wire->GetStartPoint(), wire->GetEndPoint() ); for( auto& desc : m_segments ) { if( !desc.labels.empty() && desc.labels.front()->GetText() == netName ) continue; // no point in saving intersections of the same net for( const auto& seg : desc.segs ) { auto intersection = thisWire.Intersect( seg, true ); if( intersection ) m_wireIntersections.push_back( *intersection ); } } segDesc.segs.push_back( thisWire ); screen->Append( wire ); } segmentAttribute = segmentAttribute->GetNext(); } segmentAttribute = currentSegment->GetChildren(); while( segmentAttribute ) { wxString nodeName = segmentAttribute->GetName(); if( nodeName == "junction" ) { screen->Append( loadJunction( segmentAttribute ) ); } else if( nodeName == "label" ) { SCH_TEXT* label = loadLabel( segmentAttribute, netName ); screen->Append( label ); wxASSERT( segDesc.labels.empty() || segDesc.labels.front()->GetText() == label->GetText() ); segDesc.labels.push_back( label ); labelled = true; } else if( nodeName == "pinref" ) { segmentAttribute->GetAttribute( "gate" ); // REQUIRED segmentAttribute->GetAttribute( "part" ); // REQUIRED segmentAttribute->GetAttribute( "pin" ); // REQUIRED } else if( nodeName == "wire" ) { // already handled; } else // DEFAULT { // THROW_IO_ERROR( wxString::Format( _( "XML node \"%s\" unknown" ), nodeName ) ); } // Get next segment attribute segmentAttribute = segmentAttribute->GetNext(); } // Add a small label to the net segment if it hasn't been labeled already // this preserves the named net feature of Eagle schematics. if( !labelled && firstWire ) { std::unique_ptr label; // Add a global label if the net appears on more than one Eagle sheet if( m_netCounts[netName.ToStdString()] > 1 ) label.reset( new SCH_GLOBALLABEL ); else if( segmentCount > 1 ) label.reset( new SCH_LABEL ); if( label ) { label->SetPosition( firstWire->GetStartPoint() ); label->SetText( escapeName( netName ) ); label->SetTextSize( wxSize( Mils2iu( 10 ), Mils2iu( 10 ) ) ); label->SetLabelSpinStyle( LABEL_SPIN_STYLE::LEFT ); screen->Append( label.release() ); } } currentSegment = currentSegment->GetNext(); } } SCH_LINE* SCH_EAGLE_PLUGIN::loadWire( wxXmlNode* aWireNode ) { std::unique_ptr wire = std::make_unique(); auto ewire = EWIRE( aWireNode ); wire->SetLayer( kiCadLayer( ewire.layer ) ); wxPoint begin, end; begin.x = ewire.x1.ToSchUnits(); begin.y = -ewire.y1.ToSchUnits(); end.x = ewire.x2.ToSchUnits(); end.y = -ewire.y2.ToSchUnits(); wire->SetStartPoint( begin ); wire->SetEndPoint( end ); m_connPoints[begin].emplace( wire.get() ); m_connPoints[end].emplace( wire.get() ); return wire.release(); } SCH_JUNCTION* SCH_EAGLE_PLUGIN::loadJunction( wxXmlNode* aJunction ) { std::unique_ptr junction = std::make_unique(); auto ejunction = EJUNCTION( aJunction ); wxPoint pos( ejunction.x.ToSchUnits(), -ejunction.y.ToSchUnits() ); junction->SetPosition( pos ); return junction.release(); } SCH_TEXT* SCH_EAGLE_PLUGIN::loadLabel( wxXmlNode* aLabelNode, const wxString& aNetName ) { auto elabel = ELABEL( aLabelNode, aNetName ); wxPoint elabelpos( elabel.x.ToSchUnits(), -elabel.y.ToSchUnits() ); // Determine if the label is local or global depending on // the number of sheets the net appears in bool global = m_netCounts[aNetName] > 1; std::unique_ptr label; if( global ) label = std::make_unique(); else label = std::make_unique(); label->SetPosition( elabelpos ); label->SetText( escapeName( elabel.netname ) ); label->SetTextSize( wxSize( elabel.size.ToSchUnits(), elabel.size.ToSchUnits() ) ); label->SetLabelSpinStyle( LABEL_SPIN_STYLE::RIGHT ); if( elabel.rot ) { label->SetLabelSpinStyle( (LABEL_SPIN_STYLE::SPIN) ( KiROUND( elabel.rot->degrees / 90 ) % 4 ) ); if( elabel.rot->mirror ) { label->SetLabelSpinStyle( label->GetLabelSpinStyle().MirrorY() ); } } return label.release(); } std::pair SCH_EAGLE_PLUGIN::findNearestLinePoint( const wxPoint& aPoint, const std::vector& aLines ) const { VECTOR2I nearestPoint; const SEG* nearestLine = nullptr; float d, mindistance = std::numeric_limits::max(); // Find the nearest start, middle or end of a line from the list of lines. for( const SEG& line : aLines ) { auto testpoint = line.A; d = sqrt( abs( ( ( aPoint.x - testpoint.x ) ^ 2 ) + ( ( aPoint.y - testpoint.y ) ^ 2 ) ) ); if( d < mindistance ) { mindistance = d; nearestPoint = testpoint; nearestLine = &line; } testpoint = line.Center(); d = sqrt( abs( ( ( aPoint.x - testpoint.x ) ^ 2 ) + ( ( aPoint.y - testpoint.y ) ^ 2 ) ) ); if( d < mindistance ) { mindistance = d; nearestPoint = testpoint; nearestLine = &line; } testpoint = line.B; d = sqrt( abs( ( ( aPoint.x - testpoint.x ) ^ 2 ) + ( ( aPoint.y - testpoint.y ) ^ 2 ) ) ); if( d < mindistance ) { mindistance = d; nearestPoint = testpoint; nearestLine = &line; } } return std::make_pair( nearestPoint, nearestLine ); } void SCH_EAGLE_PLUGIN::loadInstance( wxXmlNode* aInstanceNode ) { auto einstance = EINSTANCE( aInstanceNode ); SCH_SCREEN* screen = m_currentSheet->GetScreen(); // Find the part in the list for the sheet. // Assign the component its value from the part entry // Calculate the unit number from the gate entry of the instance // Assign the the LIB_ID from device set and device names auto part_it = m_partlist.find( einstance.part.Upper() ); if( part_it == m_partlist.end() ) { wxLogError( _( "Error parsing Eagle file. " "Could not find \"%s\" instance but it is referenced in the schematic." ), einstance.part ); return; } EPART* epart = part_it->second.get(); wxString libraryname = epart->library; wxString gatename = epart->deviceset + epart->device + einstance.gate; wxString symbolname = wxString( epart->deviceset + epart->device ); symbolname.Replace( "*", "" ); wxString kisymbolname = fixSymbolName( symbolname ); int unit = m_eagleLibs[libraryname].GateUnit[gatename]; wxString package; EAGLE_LIBRARY* elib = &m_eagleLibs[libraryname]; auto p = elib->package.find( kisymbolname ); if( p != elib->package.end() ) package = p->second; LIB_PART* part = m_pi->LoadSymbol( getLibFileName().GetFullPath(), kisymbolname, m_properties.get() ); if( !part ) { wxLogMessage( wxString::Format( _( "Could not find %s in the imported library" ), kisymbolname ) ); return; } LIB_ID libId( getLibName(), kisymbolname ); std::unique_ptr component = std::make_unique(); component->SetLibId( libId ); component->SetUnit( unit ); component->SetPosition( wxPoint( einstance.x.ToSchUnits(), -einstance.y.ToSchUnits() ) ); component->GetField( FOOTPRINT_FIELD )->SetText( package ); if( einstance.rot ) { component->SetOrientation( kiCadComponentRotation( einstance.rot->degrees ) ); if( einstance.rot->mirror ) component->MirrorY( einstance.x.ToSchUnits() ); } std::vector partFields; part->GetFields( partFields ); for( const LIB_FIELD* field : partFields ) { component->GetField( field->GetId() )->ImportValues( *field ); component->GetField( field->GetId() )->SetTextPos( component->GetPosition() + field->GetTextPos() ); } // If there is no footprint assigned, then prepend the reference value // with a hash character to mute netlist updater complaints wxString reference = package.IsEmpty() ? '#' + einstance.part : einstance.part; // EAGLE allows references to be single digits. This breaks KiCad netlisting, which requires // parts to have non-digit + digit annotation. If the reference begins with a number, // we prepend 'UNK' (unknown) for the symbol designator if( reference.find_first_not_of( "0123456789" ) == wxString::npos ) reference.Prepend( "UNK" ); SCH_SHEET_PATH sheetpath; m_rootSheet->LocatePathOfScreen( screen, &sheetpath ); wxString current_sheetpath = sheetpath.PathAsString() + component->m_Uuid.AsString(); component->GetField( REFERENCE_FIELD )->SetText( reference ); component->AddHierarchicalReference( current_sheetpath, reference, unit ); if( epart->value ) component->GetField( VALUE_FIELD )->SetText( *epart->value ); else component->GetField( VALUE_FIELD )->SetText( kisymbolname ); // Set the visibility of fields. component->GetField( REFERENCE_FIELD )->SetVisible( part->GetField( REFERENCE_FIELD )->IsVisible() ); component->GetField( VALUE_FIELD )->SetVisible( part->GetField( VALUE_FIELD )->IsVisible() ); for( const auto& a : epart->attribute ) { auto field = component->AddField( *component->GetField( VALUE_FIELD ) ); field->SetName( a.first ); field->SetText( a.second ); field->SetVisible( false ); } for( const auto& a : epart->variant ) { auto field = component->AddField( *component->GetField( VALUE_FIELD ) ); field->SetName( "VARIANT_" + a.first ); field->SetText( a.second ); field->SetVisible( false ); } bool valueAttributeFound = false; bool nameAttributeFound = false; wxXmlNode* attributeNode = aInstanceNode->GetChildren(); // Parse attributes for the instance while( attributeNode ) { if( attributeNode->GetName() == "attribute" ) { auto attr = EATTR( attributeNode ); SCH_FIELD* field = NULL; if( attr.name.Lower() == "name" ) { field = component->GetField( REFERENCE_FIELD ); nameAttributeFound = true; } else if( attr.name.Lower() == "value" ) { field = component->GetField( VALUE_FIELD ); valueAttributeFound = true; } else { field = component->FindField( attr.name ); if( field ) field->SetVisible( false ); } if( field ) { field->SetPosition( wxPoint( attr.x->ToSchUnits(), -attr.y->ToSchUnits() ) ); int align = attr.align ? *attr.align : ETEXT::BOTTOM_LEFT; int absdegrees = attr.rot ? attr.rot->degrees : 0; bool mirror = attr.rot ? attr.rot->mirror : false; if( einstance.rot && einstance.rot->mirror ) mirror = !mirror; bool spin = attr.rot ? attr.rot->spin : false; if( attr.display == EATTR::Off || attr.display == EATTR::NAME ) field->SetVisible( false ); int rotation = einstance.rot ? einstance.rot->degrees : 0; int reldegrees = ( absdegrees - rotation + 360.0 ); reldegrees %= 360; eagleToKicadAlignment( (EDA_TEXT*) field, align, reldegrees, mirror, spin, absdegrees ); } } else if( attributeNode->GetName() == "variant" ) { wxString variant, value; if( attributeNode->GetAttribute( "name", &variant ) && attributeNode->GetAttribute( "value", &value ) ) { auto field = component->AddField( *component->GetField( VALUE_FIELD ) ); field->SetName( "VARIANT_" + variant ); field->SetText( value ); field->SetVisible( false ); } } attributeNode = attributeNode->GetNext(); } if( einstance.smashed && einstance.smashed.Get() ) { if( !valueAttributeFound ) component->GetField( VALUE_FIELD )->SetVisible( false ); if( !nameAttributeFound ) component->GetField( REFERENCE_FIELD )->SetVisible( false ); } // Save the pin positions SYMBOL_LIB_TABLE& schLibTable = *m_schematic->Prj().SchSymbolLibTable(); LIB_PART* libSymbol = schLibTable.LoadSymbol( component->GetLibId() ); wxCHECK( libSymbol, /*void*/ ); component->SetLibSymbol( new LIB_PART( *libSymbol ) ); std::vector pins; component->GetLibPins( pins ); for( const auto& pin : pins ) m_connPoints[component->GetPinPhysicalPosition( pin )].emplace( pin ); component->ClearFlags(); screen->Append( component.release() ); } EAGLE_LIBRARY* SCH_EAGLE_PLUGIN::loadLibrary( wxXmlNode* aLibraryNode, EAGLE_LIBRARY* aEagleLibrary ) { NODE_MAP libraryChildren = MapChildren( aLibraryNode ); // Loop through the symbols and load each of them wxXmlNode* symbolNode = getChildrenNodes( libraryChildren, "symbols" ); while( symbolNode ) { wxString symbolName = symbolNode->GetAttribute( "name" ); aEagleLibrary->SymbolNodes[symbolName] = symbolNode; symbolNode = symbolNode->GetNext(); } // Loop through the device sets and load each of them wxXmlNode* devicesetNode = getChildrenNodes( libraryChildren, "devicesets" ); while( devicesetNode ) { // Get Device set information EDEVICE_SET edeviceset = EDEVICE_SET( devicesetNode ); wxString prefix = edeviceset.prefix ? edeviceset.prefix.Get() : ""; NODE_MAP aDeviceSetChildren = MapChildren( devicesetNode ); wxXmlNode* deviceNode = getChildrenNodes( aDeviceSetChildren, "devices" ); // For each device in the device set: while( deviceNode ) { // Get device information EDEVICE edevice = EDEVICE( deviceNode ); // Create symbol name from deviceset and device names. wxString symbolName = edeviceset.name + edevice.name; symbolName.Replace( "*", "" ); wxASSERT( !symbolName.IsEmpty() ); symbolName = fixSymbolName( symbolName ); if( edevice.package ) aEagleLibrary->package[symbolName] = edevice.package.Get(); // Create KiCad symbol. unique_ptr kpart( new LIB_PART( symbolName ) ); // Process each gate in the deviceset for this device. wxXmlNode* gateNode = getChildrenNodes( aDeviceSetChildren, "gates" ); int gates_count = countChildren( aDeviceSetChildren["gates"], "gate" ); kpart->SetUnitCount( gates_count ); kpart->LockUnits( true ); LIB_FIELD* reference = kpart->GetField( REFERENCE_FIELD ); if( prefix.length() == 0 ) reference->SetVisible( false ); else // If there is no footprint assigned, then prepend the reference value // with a hash character to mute netlist updater complaints reference->SetText( edevice.package ? prefix : '#' + prefix ); int gateindex = 1; bool ispower = false; while( gateNode ) { EGATE egate = EGATE( gateNode ); aEagleLibrary->GateUnit[edeviceset.name + edevice.name + egate.name] = gateindex; ispower = loadSymbol( aEagleLibrary->SymbolNodes[egate.symbol], kpart, &edevice, gateindex, egate.name ); gateindex++; gateNode = gateNode->GetNext(); } // gateNode kpart->SetUnitCount( gates_count ); if( gates_count == 1 && ispower ) kpart->SetPower(); wxString name = fixSymbolName( kpart->GetName() ); kpart->SetName( name ); m_pi->SaveSymbol( getLibFileName().GetFullPath(), new LIB_PART( *kpart.get() ), m_properties.get() ); aEagleLibrary->KiCadSymbols.insert( name, kpart.release() ); deviceNode = deviceNode->GetNext(); } // devicenode devicesetNode = devicesetNode->GetNext(); } // devicesetNode return aEagleLibrary; } bool SCH_EAGLE_PLUGIN::loadSymbol( wxXmlNode* aSymbolNode, std::unique_ptr& aPart, EDEVICE* aDevice, int aGateNumber, const wxString& aGateName ) { wxString symbolName = aSymbolNode->GetAttribute( "name" ); std::vector items; wxXmlNode* currentNode = aSymbolNode->GetChildren(); bool foundName = false; bool foundValue = false; bool ispower = false; int pincount = 0; while( currentNode ) { wxString nodeName = currentNode->GetName(); if( nodeName == "circle" ) { aPart->AddDrawItem( loadSymbolCircle( aPart, currentNode, aGateNumber ) ); } else if( nodeName == "pin" ) { EPIN ePin = EPIN( currentNode ); std::unique_ptr pin( loadPin( aPart, currentNode, &ePin, aGateNumber ) ); pincount++; pin->SetType( ELECTRICAL_PINTYPE::PT_BIDI ); if( ePin.direction ) { for( const auto& pinDir : pinDirectionsMap ) { if( ePin.direction->Lower() == pinDir.first ) { pin->SetType( pinDir.second ); if( pinDir.first == "sup" ) // power supply symbol ispower = true; break; } } } if( aDevice->connects.size() != 0 ) { for( const auto& connect : aDevice->connects ) { if( connect.gate == aGateName && pin->GetName() == connect.pin ) { wxArrayString pads = wxSplit( wxString( connect.pad ), ' ' ); pin->SetUnit( aGateNumber ); pin->SetName( escapeName( pin->GetName() ) ); if( pads.GetCount() > 1 ) { pin->SetNumberTextSize( 0 ); } // Eagle does not connect multiple NC pins together when they are stacked. // KiCad will do this for pins that are coincident. We opt here for correct // schematic netlist and leave out the multiple NC pins when stacked. for( unsigned i = 0; i < pads.GetCount(); i++ ) { if( pin->GetType() == ELECTRICAL_PINTYPE::PT_NC && i > 0 ) break; LIB_PIN* apin = new LIB_PIN( *pin ); wxString padname( pads[i] ); apin->SetNumber( padname ); aPart->AddDrawItem( apin ); } break; } } } else { pin->SetUnit( aGateNumber ); pin->SetNumber( wxString::Format( "%i", pincount ) ); aPart->AddDrawItem( pin.release() ); } } else if( nodeName == "polygon" ) { aPart->AddDrawItem( loadSymbolPolyLine( aPart, currentNode, aGateNumber ) ); } else if( nodeName == "rectangle" ) { aPart->AddDrawItem( loadSymbolRectangle( aPart, currentNode, aGateNumber ) ); } else if( nodeName == "text" ) { std::unique_ptr libtext( loadSymbolText( aPart, currentNode, aGateNumber ) ); if( libtext->GetText().Upper() == ">NAME" ) { LIB_FIELD* field = aPart->GetField( REFERENCE_FIELD ); loadFieldAttributes( field, libtext.get() ); foundName = true; } else if( libtext->GetText().Upper() == ">VALUE" ) { LIB_FIELD* field = aPart->GetField( VALUE_FIELD ); loadFieldAttributes( field, libtext.get() ); foundValue = true; } else { aPart->AddDrawItem( libtext.release() ); } } else if( nodeName == "wire" ) { aPart->AddDrawItem( loadSymbolWire( aPart, currentNode, aGateNumber ) ); } /* * else if( nodeName == "description" ) * { * } * else if( nodeName == "dimension" ) * { * } * else if( nodeName == "frame" ) * { * } */ currentNode = currentNode->GetNext(); } if( foundName == false ) aPart->GetField( REFERENCE_FIELD )->SetVisible( false ); if( foundValue == false ) aPart->GetField( VALUE_FIELD )->SetVisible( false ); return pincount == 1 ? ispower : false; } LIB_CIRCLE* SCH_EAGLE_PLUGIN::loadSymbolCircle( std::unique_ptr& aPart, wxXmlNode* aCircleNode, int aGateNumber ) { // Parse the circle properties ECIRCLE c( aCircleNode ); unique_ptr circle( new LIB_CIRCLE( aPart.get() ) ); circle->SetPosition( wxPoint( c.x.ToSchUnits(), c.y.ToSchUnits() ) ); circle->SetRadius( c.radius.ToSchUnits() ); circle->SetWidth( c.width.ToSchUnits() ); circle->SetUnit( aGateNumber ); return circle.release(); } LIB_RECTANGLE* SCH_EAGLE_PLUGIN::loadSymbolRectangle( std::unique_ptr& aPart, wxXmlNode* aRectNode, int aGateNumber ) { ERECT rect( aRectNode ); unique_ptr rectangle( new LIB_RECTANGLE( aPart.get() ) ); rectangle->SetPosition( wxPoint( rect.x1.ToSchUnits(), rect.y1.ToSchUnits() ) ); rectangle->SetEnd( wxPoint( rect.x2.ToSchUnits(), rect.y2.ToSchUnits() ) ); rectangle->SetUnit( aGateNumber ); // Eagle rectangles are filled by definition. rectangle->SetFillMode( FILL_TYPE::FILLED_SHAPE ); return rectangle.release(); } LIB_ITEM* SCH_EAGLE_PLUGIN::loadSymbolWire( std::unique_ptr& aPart, wxXmlNode* aWireNode, int aGateNumber ) { auto ewire = EWIRE( aWireNode ); wxPoint begin, end; begin.x = ewire.x1.ToSchUnits(); begin.y = ewire.y1.ToSchUnits(); end.x = ewire.x2.ToSchUnits(); end.y = ewire.y2.ToSchUnits(); if( begin == end ) return nullptr; // if the wire is an arc if( ewire.curve ) { std::unique_ptr arc = std::make_unique( aPart.get() ); wxPoint center = ConvertArcCenter( begin, end, *ewire.curve * -1 ); double radius = sqrt( abs( ( ( center.x - begin.x ) * ( center.x - begin.x ) ) + ( ( center.y - begin.y ) * ( center.y - begin.y ) ) ) ) * 2; // this emulates the filled semicircles created by a thick arc with flat ends caps. if( ewire.width.ToSchUnits() * 2 > radius ) { wxPoint centerStartVector = begin - center; wxPoint centerEndVector = end - center; centerStartVector.x = centerStartVector.x * ewire.width.ToSchUnits() * 2 / radius; centerStartVector.y = centerStartVector.y * ewire.width.ToSchUnits() * 2 / radius; centerEndVector.x = centerEndVector.x * ewire.width.ToSchUnits() * 2 / radius; centerEndVector.y = centerEndVector.y * ewire.width.ToSchUnits() * 2 / radius; begin = center + centerStartVector; end = center + centerEndVector; radius = sqrt( abs( ( ( center.x - begin.x ) * ( center.x - begin.x ) ) + ( ( center.y - begin.y ) * ( center.y - begin.y ) ) ) ) * 2; arc->SetWidth( 1 ); arc->SetFillMode( FILL_TYPE::FILLED_SHAPE ); } else { arc->SetWidth( ewire.width.ToSchUnits() ); } arc->SetPosition( center ); if( *ewire.curve > 0 ) { arc->SetStart( begin ); arc->SetEnd( end ); } else { arc->SetStart( end ); arc->SetEnd( begin ); } arc->SetRadius( radius ); arc->CalcRadiusAngles(); arc->SetUnit( aGateNumber ); return (LIB_ITEM*) arc.release(); } else { std::unique_ptr polyLine = std::make_unique( aPart.get() ); polyLine->AddPoint( begin ); polyLine->AddPoint( end ); polyLine->SetUnit( aGateNumber ); polyLine->SetWidth( ewire.width.ToSchUnits() ); return (LIB_ITEM*) polyLine.release(); } } LIB_POLYLINE* SCH_EAGLE_PLUGIN::loadSymbolPolyLine( std::unique_ptr& aPart, wxXmlNode* aPolygonNode, int aGateNumber ) { std::unique_ptr polyLine = std::make_unique( aPart.get() ); EPOLYGON epoly( aPolygonNode ); wxXmlNode* vertex = aPolygonNode->GetChildren(); wxPoint pt; while( vertex ) { if( vertex->GetName() == "vertex" ) // skip node { EVERTEX evertex( vertex ); pt = wxPoint( evertex.x.ToSchUnits(), evertex.y.ToSchUnits() ); polyLine->AddPoint( pt ); } vertex = vertex->GetNext(); } polyLine->SetFillMode( FILL_TYPE::FILLED_SHAPE ); polyLine->SetUnit( aGateNumber ); return polyLine.release(); } LIB_PIN* SCH_EAGLE_PLUGIN::loadPin( std::unique_ptr& aPart, wxXmlNode* aPin, EPIN* aEPin, int aGateNumber ) { std::unique_ptr pin = std::make_unique( aPart.get() ); pin->SetPosition( wxPoint( aEPin->x.ToSchUnits(), aEPin->y.ToSchUnits() ) ); pin->SetName( aEPin->name ); pin->SetUnit( aGateNumber ); int roti = aEPin->rot ? aEPin->rot->degrees : 0; switch( roti ) { default: wxASSERT_MSG( false, wxString::Format( "Unhandled orientation (%d degrees)", roti ) ); KI_FALLTHROUGH; case 0: pin->SetOrientation( 'R' ); break; case 90: pin->SetOrientation( 'U' ); break; case 180: pin->SetOrientation( 'L' ); break; case 270: pin->SetOrientation( 'D' ); break; } if( aEPin->length ) { wxString length = aEPin->length.Get(); if( length == "short" ) { pin->SetLength( Mils2iu( 100 ) ); } else if( length == "middle" ) { pin->SetLength( Mils2iu( 200 ) ); } else if( length == "long" ) { pin->SetLength( Mils2iu( 300 ) ); } else if( length == "point" ) { pin->SetLength( Mils2iu( 0 ) ); } } // emulate the visibility of pin elements if( aEPin->visible ) { wxString visible = aEPin->visible.Get(); if( visible == "off" ) { pin->SetNameTextSize( 0 ); pin->SetNumberTextSize( 0 ); } else if( visible == "pad" ) { pin->SetNameTextSize( 0 ); } else if( visible == "pin" ) { pin->SetNumberTextSize( 0 ); } /* * else if( visible == "both" ) * { * } */ } if( aEPin->function ) { wxString function = aEPin->function.Get(); if( function == "dot" ) { pin->SetShape( GRAPHIC_PINSHAPE::INVERTED ); } else if( function == "clk" ) { pin->SetShape( GRAPHIC_PINSHAPE::CLOCK ); } else if( function == "dotclk" ) { pin->SetShape( GRAPHIC_PINSHAPE::INVERTED_CLOCK ); } } return pin.release(); } LIB_TEXT* SCH_EAGLE_PLUGIN::loadSymbolText( std::unique_ptr& aPart, wxXmlNode* aLibText, int aGateNumber ) { std::unique_ptr libtext = std::make_unique( aPart.get() ); ETEXT etext( aLibText ); libtext->SetUnit( aGateNumber ); libtext->SetPosition( wxPoint( etext.x.ToSchUnits(), etext.y.ToSchUnits() ) ); // Eagle supports multiple line text in library symbols. Legacy library symbol text cannot // contain CRs or LFs. // // @todo Split this into multiple text objects and offset the Y position so that it looks // more like the original Eagle schematic. wxString text = aLibText->GetNodeContent(); std::replace( text.begin(), text.end(), '\n', '_' ); std::replace( text.begin(), text.end(), '\r', '_' ); libtext->SetText( text.IsEmpty() ? "~~" : text ); loadTextAttributes( libtext.get(), etext ); return libtext.release(); } SCH_TEXT* SCH_EAGLE_PLUGIN::loadPlainText( wxXmlNode* aSchText ) { std::unique_ptr schtext = std::make_unique(); ETEXT etext = ETEXT( aSchText ); const wxString& thetext = aSchText->GetNodeContent(); schtext->SetText( thetext.IsEmpty() ? "\" \"" : escapeName( thetext ) ); schtext->SetPosition( wxPoint( etext.x.ToSchUnits(), -etext.y.ToSchUnits() ) ); loadTextAttributes( schtext.get(), etext ); schtext->SetItalic( false ); return schtext.release(); } void SCH_EAGLE_PLUGIN::loadTextAttributes( EDA_TEXT* aText, const ETEXT& aAttribs ) const { aText->SetTextSize( aAttribs.ConvertSize() ); if( aAttribs.ratio ) { if( aAttribs.ratio.CGet() > 12 ) { aText->SetBold( true ); aText->SetTextThickness( GetPenSizeForBold( aText->GetTextWidth() ) ); } } int align = aAttribs.align ? *aAttribs.align : ETEXT::BOTTOM_LEFT; int degrees = aAttribs.rot ? aAttribs.rot->degrees : 0; bool mirror = aAttribs.rot ? aAttribs.rot->mirror : false; bool spin = aAttribs.rot ? aAttribs.rot->spin : false; eagleToKicadAlignment( aText, align, degrees, mirror, spin, 0 ); } void SCH_EAGLE_PLUGIN::loadFieldAttributes( LIB_FIELD* aField, const LIB_TEXT* aText ) const { aField->SetTextPos( aText->GetPosition() ); aField->SetTextSize( aText->GetTextSize() ); aField->SetTextAngle( aText->GetTextAngle() ); aField->SetBold( aText->IsBold() ); aField->SetVertJustify( aText->GetVertJustify() ); aField->SetHorizJustify( aText->GetHorizJustify() ); aField->SetVisible( true ); } void SCH_EAGLE_PLUGIN::adjustNetLabels() { // Eagle supports detached labels, so a label does not need to be placed on a wire // to be associated with it. KiCad needs to move them, so the labels actually touch the // corresponding wires. // Sort the intersection points to speed up the search process std::sort( m_wireIntersections.begin(), m_wireIntersections.end() ); auto onIntersection = [&]( const VECTOR2I& aPos ) { return std::binary_search( m_wireIntersections.begin(), m_wireIntersections.end(), aPos ); }; for( auto& segDesc : m_segments ) { for( SCH_TEXT* label : segDesc.labels ) { VECTOR2I labelPos( label->GetPosition() ); const SEG* segAttached = segDesc.LabelAttached( label ); if( segAttached && !onIntersection( labelPos ) ) continue; // label is placed correctly // Move the label to the nearest wire if( !segAttached ) { std::tie( labelPos, segAttached ) = findNearestLinePoint( label->GetPosition(), segDesc.segs ); if( !segAttached ) // we cannot do anything continue; } // Create a vector pointing in the direction of the wire, 50 mils long VECTOR2I wireDirection( segAttached->B - segAttached->A ); wireDirection = wireDirection.Resize( Mils2iu( 50 ) ); const VECTOR2I origPos( labelPos ); // Flags determining the search direction bool checkPositive = true, checkNegative = true, move = false; int trial = 0; // Be sure the label is not placed on a wire intersection while( ( !move || onIntersection( labelPos ) ) && ( checkPositive || checkNegative ) ) { move = false; // Move along the attached wire to find the new label position if( trial % 2 == 1 ) { labelPos = wxPoint( origPos + wireDirection * trial / 2 ); move = checkPositive = segAttached->Contains( labelPos ); } else { labelPos = wxPoint( origPos - wireDirection * trial / 2 ); move = checkNegative = segAttached->Contains( labelPos ); } ++trial; } if( move ) label->SetPosition( wxPoint( labelPos ) ); } } m_segments.clear(); m_wireIntersections.clear(); } bool SCH_EAGLE_PLUGIN::CheckHeader( const wxString& aFileName ) { // Open file and check first line wxTextFile tempFile; tempFile.Open( aFileName ); wxString firstline; // read the first line firstline = tempFile.GetFirstLine(); wxString secondline = tempFile.GetNextLine(); wxString thirdline = tempFile.GetNextLine(); tempFile.Close(); return firstline.StartsWith( "GetScreen()->Items().Overlapping( aWire->GetBoundingBox() ) ) { if( item->Type() == SCH_LABEL_T || item->Type() == SCH_GLOBAL_LABEL_T ) { if( TestSegmentHit( item->GetPosition(), ( (SCH_LINE*) aWire )->GetStartPoint(), ( (SCH_LINE*) aWire )->GetEndPoint(), 0 ) ) { item->SetPosition( aNewEndPoint ); } } } } void SCH_EAGLE_PLUGIN::addBusEntries() { // Add bus entry symbols // TODO: Cleanup this function and break into pieces // for each wire segment, compare each end with all busses. // If the wire end is found to end on a bus segment, place a bus entry symbol. for( auto it1 = m_currentSheet->GetScreen()->Items().OfType( SCH_LINE_T ).begin(); it1 != m_currentSheet->GetScreen()->Items().end(); ++it1 ) { SCH_LINE* bus = static_cast( *it1 ); // Check line type for wire if( bus->GetLayer() != LAYER_BUS ) continue; wxPoint busstart = bus->GetStartPoint(); wxPoint busend = bus->GetEndPoint(); auto it2 = it1; ++it2; for( ; it2 != m_currentSheet->GetScreen()->Items().end(); ++it2 ) { SCH_LINE* line = static_cast( *it2 ); // Check line type for bus if( ( (SCH_LINE*) *it2 )->GetLayer() == LAYER_WIRE ) { // Get points of both segments. wxPoint linestart = line->GetStartPoint(); wxPoint lineend = line->GetEndPoint(); // Test for horizontal wire and vertical bus if( linestart.y == lineend.y && busstart.x == busend.x ) { if( TestSegmentHit( linestart, busstart, busend, 0 ) ) { // Wire start is on a bus. // Wire start is on the vertical bus // if the end of the wire is to the left of the bus if( lineend.x < busstart.x ) { // | // ---| // | if( TestSegmentHit( linestart + wxPoint( 0, -100 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( linestart + wxPoint( -100, 0 ), true ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, linestart + wxPoint( -100, 0 ) ); line->SetStartPoint( linestart + wxPoint( -100, 0 ) ); } else if( TestSegmentHit( linestart + wxPoint( 0, 100 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( linestart + wxPoint( -100, 0 ), false ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, linestart + wxPoint( -100, 0 ) ); line->SetStartPoint( linestart + wxPoint( -100, 0 ) ); } else { std::shared_ptr ercItem = ERC_ITEM::Create( 0 ); ercItem->SetErrorMessage( _( "Bus Entry needed" ) ); SCH_MARKER* marker = new SCH_MARKER( ercItem, linestart ); m_currentSheet->GetScreen()->Append( marker ); } } // else the wire end is to the right of the bus // Wire is to the right of the bus // | // |---- // | else { // test is bus exists above the wire if( TestSegmentHit( linestart + wxPoint( 0, -100 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( linestart + wxPoint( 0, -100 ), false ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, linestart + wxPoint( 100, 0 ) ); line->SetStartPoint( linestart + wxPoint( 100, 0 ) ); } // test is bus exists below the wire else if( TestSegmentHit( linestart + wxPoint( 0, 100 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( linestart + wxPoint( 0, 100 ), true ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, linestart + wxPoint( 100, 0 ) ); line->SetStartPoint( linestart + wxPoint( 100, 0 ) ); } else { std::shared_ptr ercItem = ERC_ITEM::Create( 0 ); ercItem->SetErrorMessage( _( "Bus Entry needed" ) ); SCH_MARKER* marker = new SCH_MARKER( ercItem, linestart ); m_currentSheet->GetScreen()->Append( marker ); } } } // Same thing but test end of the wire instead. if( TestSegmentHit( lineend, busstart, busend, 0 ) ) { // Wire end is on the vertical bus // if the start of the wire is to the left of the bus if( linestart.x < busstart.x ) { // Test if bus exists above the wire if( TestSegmentHit( lineend + wxPoint( 0, 100 ), busstart, busend, 0 ) ) { // | // ___/| SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( lineend + wxPoint( -100, 0 ), false ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, lineend + wxPoint( -100, 0 ) ); line->SetEndPoint( lineend + wxPoint( -100, 0 ) ); } // Test if bus exists below the wire else if( TestSegmentHit( lineend + wxPoint( 0, -100 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( lineend + wxPoint( -100, 0 ), true ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, lineend + wxPoint( -100, 0 ) ); line->SetEndPoint( lineend + wxPoint( -100, 0 ) ); } else { std::shared_ptr ercItem = ERC_ITEM::Create( 0 ); ercItem->SetErrorMessage( _( "Bus Entry needed" ) ); SCH_MARKER* marker = new SCH_MARKER( ercItem, lineend ); m_currentSheet->GetScreen()->Append( marker ); } } // else the start of the wire is to the right of the bus // | // |---- // | else { // test if bus existed above the wire if( TestSegmentHit( lineend + wxPoint( 0, -100 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( lineend + wxPoint( 0, -100 ), false ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, lineend + wxPoint( 100, 0 ) ); line->SetEndPoint( lineend + wxPoint( 100, 0 ) ); } // test if bus existed below the wire else if( TestSegmentHit( lineend + wxPoint( 0, 100 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( lineend + wxPoint( 0, 100 ), true ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, lineend + wxPoint( 100, 0 ) ); line->SetEndPoint( lineend + wxPoint( 100, 0 ) ); } else { std::shared_ptr ercItem = ERC_ITEM::Create( 0 ); ercItem->SetErrorMessage( _( "Bus Entry needed" ) ); SCH_MARKER* marker = new SCH_MARKER( ercItem, lineend ); m_currentSheet->GetScreen()->Append( marker ); } } } } // if( linestart.y == lineend.y && busstart.x == busend.x) // Test for horizontal wire and vertical bus if( linestart.x == lineend.x && busstart.y == busend.y ) { if( TestSegmentHit( linestart, busstart, busend, 0 ) ) { // Wire start is on the bus // If wire end is above the bus, if( lineend.y < busstart.y ) { // Test for bus existence to the left of the wire if( TestSegmentHit( linestart + wxPoint( -100, 0 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( linestart + wxPoint( -100, 0 ), true ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, linestart + wxPoint( 0, -100 ) ); line->SetStartPoint( linestart + wxPoint( 0, -100 ) ); } else if( TestSegmentHit( linestart + wxPoint( 100, 0 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( linestart + wxPoint( 0, 100 ), false ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, linestart + wxPoint( 0, -100 ) ); line->SetStartPoint( linestart + wxPoint( 0, -100 ) ); } else { std::shared_ptr ercItem = ERC_ITEM::Create( 0 ); ercItem->SetErrorMessage( _( "Bus Entry needed" ) ); SCH_MARKER* marker = new SCH_MARKER( ercItem, linestart ); m_currentSheet->GetScreen()->Append( marker ); } } else // wire end is below the bus. { // Test for bus existence to the left of the wire if( TestSegmentHit( linestart + wxPoint( -100, 0 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( linestart + wxPoint( -100, 0 ), false ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, linestart + wxPoint( 0, 100 ) ); line->SetStartPoint( linestart + wxPoint( 0, 100 ) ); } else if( TestSegmentHit( linestart + wxPoint( 100, 0 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( linestart + wxPoint( 100, 0 ), true ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, linestart + wxPoint( 0, 100 ) ); line->SetStartPoint( linestart + wxPoint( 0, 100 ) ); } else { std::shared_ptr ercItem = ERC_ITEM::Create( 0 ); ercItem->SetErrorMessage( _( "Bus Entry needed" ) ); SCH_MARKER* marker = new SCH_MARKER( ercItem, linestart ); m_currentSheet->GetScreen()->Append( marker ); } } } if( TestSegmentHit( lineend, busstart, busend, 0 ) ) { // Wire end is on the bus // If wire start is above the bus, if( linestart.y < busstart.y ) { // Test for bus existence to the left of the wire if( TestSegmentHit( lineend + wxPoint( -100, 0 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( lineend + wxPoint( -100, 0 ), true ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, lineend + wxPoint( 0, -100 ) ); line->SetEndPoint( lineend + wxPoint( 0, -100 ) ); } else if( TestSegmentHit( lineend + wxPoint( 100, 0 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( lineend + wxPoint( 0, -100 ), false ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, lineend + wxPoint( 0, -100 ) ); line->SetEndPoint( lineend + wxPoint( 0, -100 ) ); } else { std::shared_ptr ercItem = ERC_ITEM::Create( 0 ); ercItem->SetErrorMessage( _( "Bus Entry needed" ) ); SCH_MARKER* marker = new SCH_MARKER( ercItem, lineend ); m_currentSheet->GetScreen()->Append( marker ); } } else // wire end is below the bus. { // Test for bus existence to the left of the wire if( TestSegmentHit( lineend + wxPoint( -100, 0 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( lineend + wxPoint( -100, 0 ), false ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, lineend + wxPoint( 0, 100 ) ); line->SetEndPoint( lineend + wxPoint( 0, 100 ) ); } else if( TestSegmentHit( lineend + wxPoint( 100, 0 ), busstart, busend, 0 ) ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( lineend + wxPoint( 0, 100 ), true ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, lineend + wxPoint( 0, 100 ) ); line->SetEndPoint( lineend + wxPoint( 0, 100 ) ); } else { std::shared_ptr ercItem = ERC_ITEM::Create( 0 ); ercItem->SetErrorMessage( _( "Bus Entry needed" ) ); SCH_MARKER* marker = new SCH_MARKER( ercItem, lineend ); m_currentSheet->GetScreen()->Append( marker ); } } } } linestart = line->GetStartPoint(); lineend = line->GetEndPoint(); busstart = bus->GetStartPoint(); busend = bus->GetEndPoint(); // bus entry wire isn't horizontal or vertical if( TestSegmentHit( linestart, busstart, busend, 0 ) ) { wxPoint wirevector = linestart - lineend; if( wirevector.x > 0 ) { if( wirevector.y > 0 ) { wxPoint p = linestart + wxPoint( -100, -100 ); SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( p, false ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, p ); if( p == lineend ) // wire is overlapped by bus entry symbol { m_currentSheet->GetScreen()->DeleteItem( line ); line = nullptr; } else { line->SetStartPoint( p ); } } else { wxPoint p = linestart + wxPoint( -100, 100 ); SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( p, true ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, p ); if( p == lineend ) // wire is overlapped by bus entry symbol { m_currentSheet->GetScreen()->DeleteItem( line ); line = nullptr; } else { line->SetStartPoint( p ); } } } else { if( wirevector.y > 0 ) { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( linestart, true ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, linestart + wxPoint( 100, -100 ) ); if( linestart + wxPoint( 100, -100 ) == lineend ) // wire is overlapped by bus entry symbol { m_currentSheet->GetScreen()->DeleteItem( line ); line = nullptr; } else { line->SetStartPoint( linestart + wxPoint( 100, -100 ) ); } } else { SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( linestart, false ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, linestart + wxPoint( 100, 100 ) ); if( linestart + wxPoint( 100, 100 ) == lineend ) // wire is overlapped by bus entry symbol { m_currentSheet->GetScreen()->DeleteItem( line ); line = nullptr; } else { line->SetStartPoint( linestart + wxPoint( 100, 100 ) ); } } } } if( line && TestSegmentHit( lineend, busstart, busend, 0 ) ) { wxPoint wirevector = linestart - lineend; if( wirevector.x > 0 ) { if( wirevector.y > 0 ) { wxPoint p = lineend + wxPoint( 100, 100 ); SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( lineend, false ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, p ); if( p == linestart ) // wire is overlapped by bus entry symbol { m_currentSheet->GetScreen()->DeleteItem( line ); } else { line->SetEndPoint( p ); } } else { wxPoint p = lineend + wxPoint( 100, -100 ); SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( lineend, true ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, p ); if( p == linestart ) // wire is overlapped by bus entry symbol { m_currentSheet->GetScreen()->DeleteItem( line ); } else { line->SetEndPoint( p ); } } } else { if( wirevector.y > 0 ) { wxPoint p = lineend + wxPoint( -100, 100 ); SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( p, true ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, p ); if( p == linestart ) // wire is overlapped by bus entry symbol { m_currentSheet->GetScreen()->DeleteItem( line ); } else { line->SetEndPoint( p ); } } else { wxPoint p = lineend + wxPoint( -100, -100 ); SCH_BUS_WIRE_ENTRY* busEntry = new SCH_BUS_WIRE_ENTRY( p, false ); busEntry->SetFlags( IS_NEW ); m_currentSheet->GetScreen()->Append( busEntry ); moveLabels( line, p ); if( p == linestart ) // wire is overlapped by bus entry symbol { m_currentSheet->GetScreen()->DeleteItem( line ); } else { line->SetEndPoint( p ); } } } } } } } // for ( bus .. } const SEG* SCH_EAGLE_PLUGIN::SEG_DESC::LabelAttached( const SCH_TEXT* aLabel ) const { VECTOR2I labelPos( aLabel->GetPosition() ); for( const auto& seg : segs ) { if( seg.Contains( labelPos ) ) return &seg; } return nullptr; } // TODO could be used to place junctions, instead of IsJunctionNeeded() // (see SCH_EDIT_FRAME::importFile()) bool SCH_EAGLE_PLUGIN::checkConnections( const SCH_COMPONENT* aComponent, const LIB_PIN* aPin ) const { wxPoint pinPosition = aComponent->GetPinPhysicalPosition( aPin ); auto pointIt = m_connPoints.find( pinPosition ); if( pointIt == m_connPoints.end() ) return false; const auto& items = pointIt->second; wxASSERT( items.find( aPin ) != items.end() ); return items.size() > 1; } void SCH_EAGLE_PLUGIN::addImplicitConnections( SCH_COMPONENT* aComponent, SCH_SCREEN* aScreen, bool aUpdateSet ) { wxCHECK( aComponent->GetPartRef(), /*void*/ ); // Normally power parts also have power input pins, // but they already force net names on the attached wires if( aComponent->GetPartRef()->IsPower() ) return; int unit = aComponent->GetUnit(); const wxString reference = aComponent->GetField( REFERENCE_FIELD )->GetText(); std::vector pins; aComponent->GetPartRef()->GetPins( pins ); std::set missingUnits; // Search all units for pins creating implicit connections for( const auto& pin : pins ) { if( pin->GetType() == ELECTRICAL_PINTYPE::PT_POWER_IN ) { bool pinInUnit = !unit || pin->GetUnit() == unit; // pin belongs to the tested unit // Create a global net label only if there are no other wires/pins attached if( pinInUnit && !checkConnections( aComponent, pin ) ) { // Create a net label to force the net name on the pin SCH_GLOBALLABEL* netLabel = new SCH_GLOBALLABEL; netLabel->SetPosition( aComponent->GetPinPhysicalPosition( pin ) ); netLabel->SetText( extractNetName( pin->GetName() ) ); netLabel->SetTextSize( wxSize( Mils2iu( 10 ), Mils2iu( 10 ) ) ); netLabel->SetLabelSpinStyle( LABEL_SPIN_STYLE::LEFT ); aScreen->Append( netLabel ); } else if( !pinInUnit && aUpdateSet ) { // Found a pin creating implicit connection information in another unit. // Such units will be instantiated if they do not appear in another sheet and // processed later. wxASSERT( pin->GetUnit() ); missingUnits.insert( pin->GetUnit() ); } } } if( aUpdateSet ) { auto cmpIt = m_missingCmps.find( reference ); // Set the flag indicating this unit has been processed if( cmpIt != m_missingCmps.end() ) cmpIt->second.units[unit] = false; // Save the units that need later processing else if( !missingUnits.empty() ) { EAGLE_MISSING_CMP& entry = m_missingCmps[reference]; entry.cmp = aComponent; for( int i : missingUnits ) entry.units.emplace( i, true ); } } } wxString SCH_EAGLE_PLUGIN::fixSymbolName( const wxString& aName ) { wxString ret = LIB_ID::FixIllegalChars( aName ); return ret; } wxString SCH_EAGLE_PLUGIN::translateEagleBusName( const wxString& aEagleName ) const { if( NET_SETTINGS::ParseBusVector( aEagleName, nullptr, nullptr ) ) return aEagleName; wxString ret = "{"; wxStringTokenizer tokenizer( aEagleName, "," ); while( tokenizer.HasMoreTokens() ) { wxString member = tokenizer.GetNextToken(); // In Eagle, overbar text is automatically stopped at the end of the net name, even when // that net name is part of a bus definition. In KiCad, we don't (currently) do that, so // if there is an odd number of overbar markers in this net name, we need to append one // to close it out before appending the space. if( member.Freq( '!' ) % 2 > 0 ) member << "!"; ret << member << " "; } ret.Trim( true ); ret << "}"; return ret; }