/*******************************************/ /* class_board.cpp - BOARD class functions */ /*******************************************/ #include "fctsys.h" #include "common.h" #include "pcbnew.h" #include "class_board_design_settings.h" #include "colors_selection.h" /* This is an odd place for this, but cvpcb won't link if it is * in class_board_item.cpp like I first tried it. */ wxPoint BOARD_ITEM::ZeroOffset( 0, 0 ); // Current design settings (used also to read configs): BOARD_DESIGN_SETTINGS boardDesignSettings; /*****************/ /* Class BOARD: */ /*****************/ BOARD::BOARD( EDA_ITEM* parent, WinEDA_BasePcbFrame* frame ) : BOARD_ITEM( (BOARD_ITEM*)parent, TYPE_PCB ), m_NetClasses( this ) { m_PcbFrame = frame; m_Status_Pcb = 0; // Status word: bit 1 = calculate. SetBoardDesignSettings(&boardDesignSettings); SetColorsSettings(&g_ColorsSettings); m_NbNodes = 0; // Number of connected pads. m_NbNoconnect = 0; // Number of unconnected nets. m_CurrentZoneContour = NULL; // This ZONE_CONTAINER handle the // zone contour currently in // progress m_NetInfo = new NETINFO_LIST( this ); // handle nets info list (name, // design constraints .. m_NetInfo->BuildListOfNets(); // prepare pads and nets lists // containers. for( int layer = 0; layer < NB_COPPER_LAYERS; ++layer ) { m_Layer[layer].m_Name = GetDefaultLayerName( layer ); m_Layer[layer].m_Type = LT_SIGNAL; } // Initial parameters for the default NETCLASS come from the global // preferences // within g_DesignSettings via the NETCLASS() constructor. // Should user eventually load a board from a disk file, then these // defaults // will get overwritten during load. m_NetClasses.GetDefault()->SetDescription( _( "This is the default net class." ) ); m_ViaSizeSelector = 0; m_TrackWidthSelector = 0; // Initialize default values. SetCurrentNetClass( m_NetClasses.GetDefault()->GetName() ); } BOARD::~BOARD() { if( m_PcbFrame->GetScreen() ) m_PcbFrame->GetScreen()->ClearUndoRedoList(); while( m_ZoneDescriptorList.size() ) { ZONE_CONTAINER* area_to_remove = m_ZoneDescriptorList[0]; Delete( area_to_remove ); } m_FullRatsnest.clear(); m_LocalRatsnest.clear(); DeleteMARKERs(); DeleteZONEOutlines(); delete m_CurrentZoneContour; m_CurrentZoneContour = NULL; delete m_NetInfo; } /** * Function SetCurrentNetClass * Must be called after a netclass selection (or after a netclass parameter * change * Initialize vias and tracks values displayed in combo boxes of the auxiliary * toolbar and some other parameters (netclass name ....) * @param aNetClassName = the new netclass name * @return true if lists of tracks and vias sizes are modified */ bool BOARD::SetCurrentNetClass( const wxString& aNetClassName ) { NETCLASS* netClass = m_NetClasses.Find( aNetClassName ); bool lists_sizes_modified = false; // if not found (should not happen) use the default if( netClass == NULL ) netClass = m_NetClasses.GetDefault(); m_CurrentNetClassName = netClass->GetName(); // Initialize others values: if( m_ViasDimensionsList.size() == 0 ) { VIA_DIMENSION viadim; lists_sizes_modified = true; m_ViasDimensionsList.push_back( viadim ); } if( m_TrackWidthList.size() == 0 ) { lists_sizes_modified = true; m_TrackWidthList.push_back( 0 ); } /* note the m_ViasDimensionsList[0] and m_TrackWidthList[0] values * are always the Netclass values */ if( m_ViasDimensionsList[0].m_Diameter != netClass->GetViaDiameter() ) lists_sizes_modified = true; m_ViasDimensionsList[0].m_Diameter = netClass->GetViaDiameter(); if( m_TrackWidthList[0] != netClass->GetTrackWidth() ) lists_sizes_modified = true; m_TrackWidthList[0] = netClass->GetTrackWidth(); if( m_ViaSizeSelector >= m_ViasDimensionsList.size() ) m_ViaSizeSelector = m_ViasDimensionsList.size(); if( m_TrackWidthSelector >= m_TrackWidthList.size() ) m_TrackWidthSelector = m_TrackWidthList.size(); return lists_sizes_modified; } /** * Function GetBiggestClearanceValue * @return the biggest clearance value found in NetClasses list */ int BOARD::GetBiggestClearanceValue() { int clearance = m_NetClasses.GetDefault()->GetClearance(); //Read list of Net Classes for( NETCLASSES::const_iterator nc = m_NetClasses.begin(); nc != m_NetClasses.end(); nc++ ) { NETCLASS* netclass = nc->second; clearance = MAX( clearance, netclass->GetClearance() ); } return clearance; } /** * Function GetCurrentMicroViaSize * @return the current micro via size, * that is the current netclass value */ int BOARD::GetCurrentMicroViaSize() { NETCLASS* netclass = m_NetClasses.Find( m_CurrentNetClassName ); return netclass->GetuViaDiameter(); } /** * Function GetCurrentMicroViaDrill * @return the current micro via drill, * that is the current netclass value */ int BOARD::GetCurrentMicroViaDrill() { NETCLASS* netclass = m_NetClasses.Find( m_CurrentNetClassName ); return netclass->GetuViaDrill(); } wxString BOARD::GetLayerName( int aLayerIndex ) const { if( !IsValidLayerIndex( aLayerIndex ) ) return wxEmptyString; // copper layer names are stored in the BOARD. if( IsValidCopperLayerIndex( aLayerIndex ) && IsLayerEnabled( aLayerIndex ) ) { // default names were set in BOARD::BOARD() but they may be // over-ridden by BOARD::SetLayerName() return m_Layer[aLayerIndex].m_Name; } return GetDefaultLayerName( aLayerIndex ); } wxString BOARD::GetDefaultLayerName( int aLayerNumber ) { const wxChar* txt; // These are only default layer names. For PCBNEW, the copper names // may be over-ridden in the BOARD (*.brd) file. // Use a switch to explicitly show the mapping more clearly switch( aLayerNumber ) { case LAYER_N_FRONT: txt = _( "Front" ); break; case LAYER_N_2: txt = _( "Inner2" ); break; case LAYER_N_3: txt = _( "Inner3" ); break; case LAYER_N_4: txt = _( "Inner4" ); break; case LAYER_N_5: txt = _( "Inner5" ); break; case LAYER_N_6: txt = _( "Inner6" ); break; case LAYER_N_7: txt = _( "Inner7" ); break; case LAYER_N_8: txt = _( "Inner8" ); break; case LAYER_N_9: txt = _( "Inner9" ); break; case LAYER_N_10: txt = _( "Inner10" ); break; case LAYER_N_11: txt = _( "Inner11" ); break; case LAYER_N_12: txt = _( "Inner12" ); break; case LAYER_N_13: txt = _( "Inner13" ); break; case LAYER_N_14: txt = _( "Inner14" ); break; case LAYER_N_15: txt = _( "Inner15" ); break; case LAYER_N_BACK: txt = _( "Back" ); break; case ADHESIVE_N_BACK: txt = _( "Adhes_Back" ); break; case ADHESIVE_N_FRONT: txt = _( "Adhes_Front" ); break; case SOLDERPASTE_N_BACK: txt = _( "SoldP_Back" ); break; case SOLDERPASTE_N_FRONT: txt = _( "SoldP_Front" ); break; case SILKSCREEN_N_BACK: txt = _( "SilkS_Back" ); break; case SILKSCREEN_N_FRONT: txt = _( "SilkS_Front" ); break; case SOLDERMASK_N_BACK: txt = _( "Mask_Back" ); break; case SOLDERMASK_N_FRONT: txt = _( "Mask_Front" ); break; case DRAW_N: txt = _( "Drawings" ); break; case COMMENT_N: txt = _( "Comments" ); break; case ECO1_N: txt = _( "Eco1" ); break; case ECO2_N: txt = _( "Eco2" ); break; case EDGE_N: txt = _( "PCB_Edges" ); break; default: txt = _( "BAD INDEX" ); break; } return wxString( txt ); } bool BOARD::SetLayerName( int aLayerIndex, const wxString& aLayerName ) { if( !IsValidCopperLayerIndex( aLayerIndex ) ) return false; if( aLayerName == wxEmptyString || aLayerName.Len() > 20 ) return false; // no quote chars in the name allowed if( aLayerName.Find( wxChar( '"' ) ) != wxNOT_FOUND ) return false; wxString NameTemp = aLayerName; // replace any spaces with underscores before we do any comparing NameTemp.Replace( wxT( " " ), wxT( "_" ) ); if( IsLayerEnabled( aLayerIndex ) ) { for( int i = 0; i < NB_COPPER_LAYERS; i++ ) { if( i != aLayerIndex && IsLayerEnabled( i ) && NameTemp == m_Layer[i].m_Name ) return false; } m_Layer[aLayerIndex].m_Name = NameTemp; return true; } return false; } LAYER_T BOARD::GetLayerType( int aLayerIndex ) const { if( !IsValidCopperLayerIndex( aLayerIndex ) ) return LT_SIGNAL; //@@IMB: The original test was broken due to the discontinuity // in the layer sequence. if( IsLayerEnabled( aLayerIndex ) ) return m_Layer[aLayerIndex].m_Type; return LT_SIGNAL; } bool BOARD::SetLayerType( int aLayerIndex, LAYER_T aLayerType ) { if( !IsValidCopperLayerIndex( aLayerIndex ) ) return false; //@@IMB: The original test was broken due to the discontinuity // in the layer sequence. if( IsLayerEnabled( aLayerIndex ) ) { m_Layer[aLayerIndex].m_Type = aLayerType; return true; } return false; } const char* LAYER::ShowType( LAYER_T aType ) { const char* cp; switch( aType ) { default: case LT_SIGNAL: cp = "signal"; break; case LT_POWER: cp = "power"; break; case LT_MIXED: cp = "mixed"; break; case LT_JUMPER: cp = "jumper"; break; } return cp; } LAYER_T LAYER::ParseType( const char* aType ) { if( strcmp( aType, "signal" ) == 0 ) return LT_SIGNAL; else if( strcmp( aType, "power" ) == 0 ) return LT_POWER; else if( strcmp( aType, "mixed" ) == 0 ) return LT_MIXED; else if( strcmp( aType, "jumper" ) == 0 ) return LT_JUMPER; else return LAYER_T( -1 ); } int BOARD::GetCopperLayerCount() const { return GetBoardDesignSettings()->GetCopperLayerCount(); } void BOARD::SetCopperLayerCount( int aCount ) { GetBoardDesignSettings()->SetCopperLayerCount( aCount ); } int BOARD::GetEnabledLayers() const { return GetBoardDesignSettings()->GetEnabledLayers(); } int BOARD::GetVisibleLayers() const { return GetBoardDesignSettings()->GetVisibleLayers(); } void BOARD::SetEnabledLayers( int aLayerMask ) { GetBoardDesignSettings()->SetEnabledLayers( aLayerMask ); } void BOARD::SetVisibleLayers( int aLayerMask ) { GetBoardDesignSettings()->SetVisibleLayers( aLayerMask ); } // these are not tidy, since there are PCB_VISIBLEs that are not stored in the bitmap. void BOARD::SetVisibleElements( int aMask ) { /* Call SetElementVisibility for each item, * to ensure specific calculations that can be needed by some items * just change the visibility flags could be not sufficient */ for( int ii = 0; ii < PCB_VISIBLE(END_PCB_VISIBLE_LIST); ii++ ) { int item_mask = 1 << ii; SetElementVisibility( ii, aMask & item_mask ); } } // these are not tidy, since there are PCB_VISIBLEs that are not stored in the bitmap. void BOARD::SetVisibleAlls( ) { SetVisibleLayers( FULL_LAYERS ); /* Call SetElementVisibility for each item, * to ensure specific calculations that can be needed by some items */ for( int ii = 0; ii < PCB_VISIBLE(END_PCB_VISIBLE_LIST); ii++ ) SetElementVisibility( ii, true ); } int BOARD::GetVisibleElements() const { return GetBoardDesignSettings()->GetVisibleElements(); } bool BOARD::IsElementVisible( int aPCB_VISIBLE ) const { return GetBoardDesignSettings()->IsElementVisible( aPCB_VISIBLE ); } void BOARD::SetElementVisibility( int aPCB_VISIBLE, bool isEnabled ) { switch( aPCB_VISIBLE ) { case RATSNEST_VISIBLE: GetBoardDesignSettings()->SetElementVisibility( aPCB_VISIBLE, isEnabled ); // we must clear or set the CH_VISIBLE flags to hide/show ratsnet // because we have a tool to show hide ratsnest relative to a pad or a module // so the hide/show option is a per item selection if( IsElementVisible(RATSNEST_VISIBLE) ) { for( unsigned ii = 0; ii < GetRatsnestsCount(); ii++ ) m_FullRatsnest[ii].m_Status |= CH_VISIBLE; } else { for( unsigned ii = 0; ii < GetRatsnestsCount(); ii++ ) m_FullRatsnest[ii].m_Status &= ~CH_VISIBLE; } break; default: GetBoardDesignSettings()->SetElementVisibility( aPCB_VISIBLE, isEnabled ); } } int BOARD::GetVisibleElementColor( int aPCB_VISIBLE ) { int color = -1; switch( aPCB_VISIBLE ) { case VIA_THROUGH_VISIBLE: case VIA_MICROVIA_VISIBLE: case VIA_BBLIND_VISIBLE: case MOD_TEXT_FR_VISIBLE: case MOD_TEXT_BK_VISIBLE: case MOD_TEXT_INVISIBLE: case ANCHOR_VISIBLE: case PAD_FR_VISIBLE: case PAD_BK_VISIBLE: case RATSNEST_VISIBLE: case GRID_VISIBLE: color = GetColorsSettings()->GetItemColor( aPCB_VISIBLE ); break; default: wxLogDebug( wxT( "BOARD::GetVisibleElementColor(): bad arg %d" ), aPCB_VISIBLE ); } return color; } void BOARD::SetVisibleElementColor( int aPCB_VISIBLE, int aColor ) { switch( aPCB_VISIBLE ) { case VIA_THROUGH_VISIBLE: case VIA_MICROVIA_VISIBLE: case VIA_BBLIND_VISIBLE: case MOD_TEXT_FR_VISIBLE: case MOD_TEXT_BK_VISIBLE: case MOD_TEXT_INVISIBLE: case ANCHOR_VISIBLE: case PAD_FR_VISIBLE: case PAD_BK_VISIBLE: case GRID_VISIBLE: case RATSNEST_VISIBLE: GetColorsSettings()->SetItemColor( aPCB_VISIBLE, aColor ); break; default: wxLogDebug( wxT( "BOARD::SetVisibleElementColor(): bad arg %d" ), aPCB_VISIBLE ); } } void BOARD::SetLayerColor( int aLayer, int aColor ) { GetColorsSettings()->SetLayerColor( aLayer, aColor ); } int BOARD::GetLayerColor( int aLayer ) { return GetColorsSettings()->GetLayerColor( aLayer ); } /** * Function IsModuleLayerVisible * expects either of the two layers on which a module can reside, and returns * whether that layer is visible. * @param layer One of the two allowed layers for modules: LAYER_N_FRONT or LAYER_N_BACK * @return bool - true if the layer is visible, else false. */ bool BOARD::IsModuleLayerVisible( int layer ) { if( layer==LAYER_N_FRONT ) return IsElementVisible( PCB_VISIBLE(MOD_FR_VISIBLE) ); else if( layer==LAYER_N_BACK ) return IsElementVisible( PCB_VISIBLE(MOD_BK_VISIBLE) ); else return true; } wxPoint& BOARD::GetPosition() { static wxPoint dummy( 0, 0 ); return dummy; // a reference } void BOARD::Add( BOARD_ITEM* aBoardItem, int aControl ) { if( aBoardItem == NULL ) { wxFAIL_MSG( wxT( "BOARD::Add() param error: aBoardItem NULL" ) ); return; } switch( aBoardItem->Type() ) { // this one uses a vector case TYPE_MARKER_PCB: aBoardItem->SetParent( this ); m_markers.push_back( (MARKER_PCB*) aBoardItem ); break; // this one uses a vector case TYPE_ZONE_CONTAINER: aBoardItem->SetParent( this ); m_ZoneDescriptorList.push_back( (ZONE_CONTAINER*) aBoardItem ); break; case TYPE_TRACK: case TYPE_VIA: { TRACK* insertAid = ( (TRACK*) aBoardItem )->GetBestInsertPoint( this ); m_Track.Insert( (TRACK*) aBoardItem, insertAid ); } break; case TYPE_ZONE: if( aControl & ADD_APPEND ) m_Zone.PushBack( (SEGZONE*) aBoardItem ); else m_Zone.PushFront( (SEGZONE*) aBoardItem ); aBoardItem->SetParent( this ); break; case TYPE_MODULE: if( aControl & ADD_APPEND ) m_Modules.PushBack( (MODULE*) aBoardItem ); else m_Modules.PushFront( (MODULE*) aBoardItem ); aBoardItem->SetParent( this ); // Because the list of pads has changed, reset the status // This indicate the list of pad and nets must be recalculated before // use m_Status_Pcb = 0; break; case TYPE_DIMENSION: case TYPE_DRAWSEGMENT: case TYPE_TEXTE: case TYPE_EDGE_MODULE: case TYPE_MIRE: if( aControl & ADD_APPEND ) m_Drawings.PushBack( aBoardItem ); else m_Drawings.PushFront( aBoardItem ); aBoardItem->SetParent( this ); break; // other types may use linked list default: { wxString msg; msg.Printf( wxT( "BOARD::Add() needs work: BOARD_ITEM type (%d) not handled" ), aBoardItem->Type() ); wxFAIL_MSG( msg ); } break; } } BOARD_ITEM* BOARD::Remove( BOARD_ITEM* aBoardItem ) { // find these calls and fix them! Don't send me no stinkin' NULL. wxASSERT( aBoardItem ); switch( aBoardItem->Type() ) { case TYPE_MARKER_PCB: // find the item in the vector, then remove it for( unsigned i = 0; i 0 ) unsigned BOARD::GetNodesCount() { return m_NbNodes; } /** * Function ComputeBoundaryBox * Calculate the bounding box of the board * This box contains pcb edges, pads , vias and tracks * Update m_PcbBox member * * @return 0 for an empty board (no items), else 1 */ bool BOARD::ComputeBoundaryBox() { int rayon, cx, cy, d, xmin, ymin, xmax, ymax; bool hasItems = FALSE; EDA_ITEM* PtStruct; DRAWSEGMENT* ptr; xmin = ymin = 0x7FFFFFFFl; xmax = ymax = -0x7FFFFFFFl; /* Analyze PCB edges*/ PtStruct = m_Drawings; for( ; PtStruct != NULL; PtStruct = PtStruct->Next() ) { if( PtStruct->Type() != TYPE_DRAWSEGMENT ) continue; ptr = (DRAWSEGMENT*) PtStruct; d = (ptr->m_Width / 2) + 1; if( ptr->m_Shape == S_CIRCLE ) { cx = ptr->m_Start.x; cy = ptr->m_Start.y; rayon = (int) hypot( (double) ( ptr->m_End.x - cx ), (double) ( ptr->m_End.y - cy ) ); rayon += d; xmin = MIN( xmin, cx - rayon ); ymin = MIN( ymin, cy - rayon ); xmax = MAX( xmax, cx + rayon ); ymax = MAX( ymax, cy + rayon ); hasItems = TRUE; } else { cx = MIN( ptr->m_Start.x, ptr->m_End.x ); cy = MIN( ptr->m_Start.y, ptr->m_End.y ); xmin = MIN( xmin, cx - d ); ymin = MIN( ymin, cy - d ); cx = MAX( ptr->m_Start.x, ptr->m_End.x ); cy = MAX( ptr->m_Start.y, ptr->m_End.y ); xmax = MAX( xmax, cx + d ); ymax = MAX( ymax, cy + d ); hasItems = TRUE; } } /* Analyze footprints */ for( MODULE* module = m_Modules; module; module = module->Next() ) { hasItems = TRUE; EDA_Rect box = module->GetBoundingBox(); xmin = MIN( xmin, box.GetX() ); ymin = MIN( ymin, box.GetY() ); xmax = MAX( xmax, box.GetRight() ); ymax = MAX( ymax, box.GetBottom() ); } /* Analize track and zones */ for( TRACK* track = m_Track; track; track = track->Next() ) { d = ( track->m_Width / 2 ) + 1; cx = MIN( track->m_Start.x, track->m_End.x ); cy = MIN( track->m_Start.y, track->m_End.y ); xmin = MIN( xmin, cx - d ); ymin = MIN( ymin, cy - d ); cx = MAX( track->m_Start.x, track->m_End.x ); cy = MAX( track->m_Start.y, track->m_End.y ); xmax = MAX( xmax, cx + d ); ymax = MAX( ymax, cy + d ); hasItems = TRUE; } for( TRACK* track = m_Zone; track; track = track->Next() ) { d = ( track->m_Width / 2 ) + 1; cx = MIN( track->m_Start.x, track->m_End.x ); cy = MIN( track->m_Start.y, track->m_End.y ); xmin = MIN( xmin, cx - d ); ymin = MIN( ymin, cy - d ); cx = MAX( track->m_Start.x, track->m_End.x ); cy = MAX( track->m_Start.y, track->m_End.y ); xmax = MAX( xmax, cx + d ); ymax = MAX( ymax, cy + d ); hasItems = TRUE; } if( !hasItems && m_PcbFrame ) { if( m_PcbFrame->m_Draw_Sheet_Ref ) { xmin = ymin = 0; xmax = m_PcbFrame->GetScreen()->ReturnPageSize().x; ymax = m_PcbFrame->GetScreen()->ReturnPageSize().y; } else { xmin = -m_PcbFrame->GetScreen()->ReturnPageSize().x / 2; ymin = -m_PcbFrame->GetScreen()->ReturnPageSize().y / 2; xmax = m_PcbFrame->GetScreen()->ReturnPageSize().x / 2; ymax = m_PcbFrame->GetScreen()->ReturnPageSize().y / 2; } } m_BoundaryBox.SetX( xmin ); m_BoundaryBox.SetY( ymin ); m_BoundaryBox.SetWidth( xmax - xmin ); m_BoundaryBox.SetHeight( ymax - ymin ); return hasItems; } // virtual, see pcbstruct.h /* Display board statistics: pads, nets, connections.. count */ void BOARD::DisplayInfo( EDA_DRAW_FRAME* frame ) { wxString txt; frame->ClearMsgPanel(); int viasCount = 0; int trackSegmentsCount = 0; for( BOARD_ITEM* item = m_Track; item; item = item->Next() ) { if( item->Type() == TYPE_VIA ) viasCount++; else trackSegmentsCount++; } txt.Printf( wxT( "%d" ), GetPadsCount() ); frame->AppendMsgPanel( _( "Pads" ), txt, DARKGREEN ); txt.Printf( wxT( "%d" ), viasCount ); frame->AppendMsgPanel( _( "Vias" ), txt, DARKGREEN ); txt.Printf( wxT( "%d" ), trackSegmentsCount ); frame->AppendMsgPanel( _( "trackSegm" ), txt, DARKGREEN ); txt.Printf( wxT( "%d" ), GetNodesCount() ); frame->AppendMsgPanel( _( "Nodes" ), txt, DARKCYAN ); txt.Printf( wxT( "%d" ), m_NetInfo->GetCount() ); frame->AppendMsgPanel( _( "Nets" ), txt, RED ); /* These parameters are known only if the full ratsnest is available, * so, display them only if this is the case */ if( (m_Status_Pcb & NET_CODES_OK) ) { txt.Printf( wxT( "%d" ), GetRatsnestsCount() ); frame->AppendMsgPanel( _( "Links" ), txt, DARKGREEN ); txt.Printf( wxT( "%d" ), GetRatsnestsCount() - GetNoconnectCount() ); frame->AppendMsgPanel( _( "Connect" ), txt, DARKGREEN ); txt.Printf( wxT( "%d" ), GetNoconnectCount() ); frame->AppendMsgPanel( _( "Unconnected" ), txt, BLUE ); } } // virtual, see pcbstruct.h SEARCH_RESULT BOARD::Visit( INSPECTOR* inspector, const void* testData, const KICAD_T scanTypes[] ) { KICAD_T stype; SEARCH_RESULT result = SEARCH_CONTINUE; const KICAD_T* p = scanTypes; bool done = false; #if 0 && defined(DEBUG) std::cout << GetClass().mb_str() << ' '; #endif while( !done ) { stype = *p; switch( stype ) { case TYPE_PCB: result = inspector->Inspect( this, testData ); // inspect me // skip over any types handled in the above call. ++p; break; /* Instances of the requested KICAD_T live in a list, either one * that I manage, or that my modules manage. If it's a type managed * by class MODULE, then simply pass it on to each module's * MODULE::Visit() function by way of the * IterateForward( m_Modules, ... ) call. */ case TYPE_MODULE: case TYPE_PAD: case TYPE_TEXTE_MODULE: case TYPE_EDGE_MODULE: // this calls MODULE::Visit() on each module. result = IterateForward( m_Modules, inspector, testData, p ); // skip over any types handled in the above call. for( ; ; ) { switch( stype = *++p ) { case TYPE_MODULE: case TYPE_PAD: case TYPE_TEXTE_MODULE: case TYPE_EDGE_MODULE: continue; default: ; } break; } break; case TYPE_DRAWSEGMENT: case TYPE_TEXTE: case TYPE_DIMENSION: case TYPE_MIRE: result = IterateForward( m_Drawings, inspector, testData, p ); // skip over any types handled in the above call. for( ; ; ) { switch( stype = *++p ) { case TYPE_DRAWSEGMENT: case TYPE_TEXTE: case TYPE_DIMENSION: case TYPE_MIRE: continue; default: ; } break; } ; break; #if 0 // both these are on same list, so we must scan it twice in order // to get VIA priority, using new #else code below. // But we are not using separate lists for TRACKs and SEGVIAs, because // items are ordered (sorted) in the linked // list by netcode AND by physical distance: // when created, if a track or via is connected to an existing track or // via, it is put in linked list after this existing track or via // So usually, connected tracks or vias are grouped in this list // So the algorithm (used in rastnest computations) which computes the // track connectivity is faster (more than 100 time regarding to // a non ordered list) because when it searches for a connexion, first // it tests the near (near in term of linked list) 50 items // from the current item (track or via) in test. // Usually, because of this sort, a connected item (if exists) is // found. // If not found (and only in this case) an exhaustive (and time // consuming) search is made, but this case is statistically rare. case TYPE_VIA: case TYPE_TRACK: result = IterateForward( m_Track, inspector, testData, p ); // skip over any types handled in the above call. for( ; ; ) { switch( stype = *++p ) { case TYPE_VIA: case TYPE_TRACK: continue; default: ; } break; } break; #else case TYPE_VIA: result = IterateForward( m_Track, inspector, testData, p ); ++p; break; case TYPE_TRACK: result = IterateForward( m_Track, inspector, testData, p ); ++p; break; #endif case TYPE_MARKER_PCB: // MARKER_PCBS are in the m_markers std::vector for( unsigned i = 0; iVisit( inspector, testData, p ); if( result == SEARCH_QUIT ) break; } ++p; break; case TYPE_ZONE_CONTAINER: // TYPE_ZONE_CONTAINER are in the m_ZoneDescriptorList std::vector for( unsigned i = 0; i< m_ZoneDescriptorList.size(); ++i ) { result = m_ZoneDescriptorList[i]->Visit( inspector, testData, p ); if( result == SEARCH_QUIT ) break; } ++p; break; case TYPE_ZONE: result = IterateForward( m_Zone, inspector, testData, p ); ++p; break; default: // catch EOT or ANY OTHER type here and return. done = true; break; } if( result == SEARCH_QUIT ) break; } return result; } /* now using PcbGeneralLocateAndDisplay(), but this remains a useful example * of how the INSPECTOR can be used in a lightweight way. * // see pcbstruct.h * BOARD_ITEM* BOARD::FindPadOrModule( const wxPoint& refPos, int layer ) * { * class PadOrModule : public INSPECTOR * { * public: * BOARD_ITEM* found; * int layer; * int layer_mask; * * PadOrModule( int alayer ) : * found(0), layer(alayer), layer_mask( g_TabOneLayerMask[alayer] ) * {} * * SEARCH_RESULT Inspect( EDA_ITEM* testItem, const void* testData * ) * { * BOARD_ITEM* item = (BOARD_ITEM*) testItem; * const wxPoint& refPos = *(const wxPoint*) testData; * * if( item->Type() == TYPE_PAD ) * { * D_PAD* pad = (D_PAD*) item; * if( pad->HitTest( refPos ) ) * { * if( layer_mask & pad->m_Masque_Layer ) * { * found = item; * return SEARCH_QUIT; * } * else if( !found ) * { * MODULE* parent = (MODULE*) pad->m_Parent; * if( IsModuleLayerVisible( parent->GetLayer() ) ) * found = item; * } * } * } * * else if( item->Type() == TYPE_MODULE ) * { * MODULE* module = (MODULE*) item; * * // consider only visible modules * if( IsModuleLayerVisible( module->GetLayer() ) ) * { * if( module->HitTest( refPos ) ) * { * if( layer == module->GetLayer() ) * { * found = item; * return SEARCH_QUIT; * } * * // layer mismatch, save in case we don't find a * // future layer match hit. * if( !found ) * found = item; * } * } * } * return SEARCH_CONTINUE; * } * }; * * PadOrModule inspector( layer ); * * // search only for PADs first, then MODULES, and preferably a layer match * static const KICAD_T scanTypes[] = { TYPE_PAD, TYPE_MODULE, EOT }; * * // visit this BOARD with the above inspector * Visit( &inspector, &refPos, scanTypes ); * * return inspector.found; * } */ /** * Function FindNet * searches for a net with the given netcode. * @param aNetcode The netcode to search for. * @return NETINFO_ITEM* - the net or NULL if not found. */ NETINFO_ITEM* BOARD::FindNet( int aNetcode ) const { // the first valid netcode is 1 and the last is m_NetInfo->GetCount()-1. // zero is reserved for "no connection" and is not used. // NULL is returned for non valid netcodes NETINFO_ITEM* net = m_NetInfo->GetNetItem( aNetcode ); #if defined(DEBUG) if( net ) // item can be NULL if anetcode is not valid { if( aNetcode != net->GetNet() ) { printf( "FindNet() anetcode %d != GetNet() %d (net: %s)\n", aNetcode, net->GetNet(), CONV_TO_UTF8( net->GetNetname() ) ); } } #endif return net; } /** * Function FindNet overlaid * searches for a net with the given name. * @param aNetname A Netname to search for. * @return NETINFO_ITEM* - the net or NULL if not found. */ NETINFO_ITEM* BOARD::FindNet( const wxString& aNetname ) const { // the first valid netcode is 1. // zero is reserved for "no connection" and is not used. if( aNetname.IsEmpty() ) return NULL; int ncount = m_NetInfo->GetCount(); // Search for a netname = aNetname #if 0 // Use a sequential search: easy to understand, but slow for( int ii = 1; ii < ncount; ii++ ) { NETINFO_ITEM* item = m_NetInfo->GetNetItem( ii ); if( item && item->GetNetname() == aNetname ) { return item; } } #else // Use a fast binary search, // this is possible because Nets are alphabetically ordered in list // see NETINFO_LIST::BuildListOfNets() and // NETINFO_LIST::Build_Pads_Full_List() int imax = ncount - 1; int index = imax; while( ncount > 0 ) { int ii = ncount; ncount >>= 1; if( (ii & 1) && ( ii > 1 ) ) ncount++; NETINFO_ITEM* item = m_NetInfo->GetNetItem( index ); if( item == NULL ) return NULL; int icmp = item->GetNetname().Cmp( aNetname ); if( icmp == 0 ) // found ! { return item; } if( icmp < 0 ) // must search after item { index += ncount; if( index > imax ) index = imax; continue; } if( icmp > 0 ) // must search before item { index -= ncount; if( index < 1 ) index = 1; continue; } } #endif return NULL; } MODULE* BOARD::FindModuleByReference( const wxString& aReference ) const { struct FindModule : public INSPECTOR { MODULE* found; FindModule() : found( 0 ) {} // implement interface INSPECTOR SEARCH_RESULT Inspect( EDA_ITEM* item, const void* data ) { MODULE* module = (MODULE*) item; const wxString& ref = *(const wxString*) data; if( ref == module->GetReference() ) { found = module; return SEARCH_QUIT; } return SEARCH_CONTINUE; } } inspector; // search only for MODULES static const KICAD_T scanTypes[] = { TYPE_MODULE, EOT }; // visit this BOARD with the above inspector BOARD* nonconstMe = (BOARD*) this; nonconstMe->Visit( &inspector, &aReference, scanTypes ); return inspector.found; } // Sort nets by decreasing pad count static bool s_SortByNodes( const NETINFO_ITEM* a, const NETINFO_ITEM* b ) { return b->GetNodesCount() < a->GetNodesCount(); } /** * Function ReturnSortedNetnamesList * @param aNames An array string to fill with net names. * @param aSortbyPadsCount : true = sort by active pads count, false = no sort * (i.e. leave the sort by net names) * @return int - net names count. */ int BOARD::ReturnSortedNetnamesList( wxArrayString& aNames, bool aSortbyPadsCount ) { if( m_NetInfo->GetCount() == 0 ) return 0; // Build the list std::vector netBuffer; netBuffer.reserve( m_NetInfo->GetCount() ); for( unsigned ii = 1; ii < m_NetInfo->GetCount(); ii++ ) { if( m_NetInfo->GetNetItem( ii )->GetNet() > 0 ) netBuffer.push_back( m_NetInfo->GetNetItem( ii ) ); } // sort the list if( aSortbyPadsCount ) sort( netBuffer.begin(), netBuffer.end(), s_SortByNodes ); for( unsigned ii = 0; ii < netBuffer.size(); ii++ ) aNames.Add( netBuffer[ii]->GetNetname() ); return netBuffer.size(); } bool BOARD::Save( FILE* aFile ) const { bool rc = false; BOARD_ITEM* item; // save the nets for( unsigned ii = 0; ii < m_NetInfo->GetCount(); ii++ ) if( !m_NetInfo->GetNetItem( ii )->Save( aFile ) ) goto out; // Saved nets do not include netclass names, so save netclasses after nets. m_NetClasses.Save( aFile ); // save the modules for( item = m_Modules; item; item = item->Next() ) if( !item->Save( aFile ) ) goto out; for( item = m_Drawings; item; item = item->Next() ) { switch( item->Type() ) { case TYPE_TEXTE: case TYPE_DRAWSEGMENT: case TYPE_MIRE: case TYPE_DIMENSION: if( !item->Save( aFile ) ) goto out; break; default: // future: throw exception here #if defined(DEBUG) printf( "BOARD::Save() ignoring m_Drawings type %d\n", item->Type() ); #endif break; } } // do not save MARKER_PCBs, they can be regenerated easily // save the tracks & vias fprintf( aFile, "$TRACK\n" ); for( item = m_Track; item; item = item->Next() ) if( !item->Save( aFile ) ) goto out; fprintf( aFile, "$EndTRACK\n" ); // save the zones fprintf( aFile, "$ZONE\n" ); for( item = m_Zone; item; item = item->Next() ) if( !item->Save( aFile ) ) goto out; fprintf( aFile, "$EndZONE\n" ); // save the zone edges for( unsigned ii = 0; ii < m_ZoneDescriptorList.size(); ii++ ) { ZONE_CONTAINER* edge_zone = m_ZoneDescriptorList[ii]; edge_zone->Save( aFile ); } if( fprintf( aFile, "$EndBOARD\n" ) != sizeof("$EndBOARD\n") - 1 ) goto out; rc = true; // wrote all OK out: return rc; } /* * Function RedrawAreasOutlines * Redraw all areas outlines on layer aLayer ( redraw all if aLayer < 0 ) */ void BOARD::RedrawAreasOutlines( EDA_DRAW_PANEL* panel, wxDC* aDC, int aDrawMode, int aLayer ) { if( !aDC ) return; for( int ii = 0; ii < GetAreaCount(); ii++ ) { ZONE_CONTAINER* edge_zone = GetArea( ii ); if( (aLayer < 0) || ( aLayer == edge_zone->GetLayer() ) ) edge_zone->Draw( panel, aDC, aDrawMode ); } } /** * Function RedrawFilledAreas * Redraw all areas outlines on layer aLayer ( redraw all if aLayer < 0 ) */ void BOARD::RedrawFilledAreas( EDA_DRAW_PANEL* panel, wxDC* aDC, int aDrawMode, int aLayer ) { if( !aDC ) return; for( int ii = 0; ii < GetAreaCount(); ii++ ) { ZONE_CONTAINER* edge_zone = GetArea( ii ); if( (aLayer < 0) || ( aLayer == edge_zone->GetLayer() ) ) edge_zone->DrawFilledArea( panel, aDC, aDrawMode ); } } /** * Function HitTestForAnyFilledArea * tests if the given wxPoint is within the bounds of a filled area of this * zone. * the test is made on zones on layer from aStartLayer to aEndLayer * Note: if a zone has its flag BUSY (in .m_State) is set, it is ignored. * @param aRefPos A wxPoint to test * @param aStartLayer the first layer to test * @param aEndLayer the last layer (-1 to ignore it) to test * @return ZONE_CONTAINER* return a pointer to the ZONE_CONTAINER found, else * NULL */ ZONE_CONTAINER* BOARD::HitTestForAnyFilledArea( const wxPoint& aRefPos, int aStartLayer, int aEndLayer ) { if( aEndLayer < 0 ) aEndLayer = aStartLayer; if( aEndLayer < aStartLayer ) EXCHG( aEndLayer, aStartLayer ); for( unsigned ia = 0; ia < m_ZoneDescriptorList.size(); ia++ ) { ZONE_CONTAINER* area = m_ZoneDescriptorList[ia]; int layer = area->GetLayer(); if( (layer < aStartLayer) || (layer > aEndLayer) ) continue; if( area->GetState( BUSY ) ) // In locate functions we must skip // tagged items with BUSY flag set. continue; if( area->HitTestFilledArea( aRefPos ) ) return area; } return NULL; } /** * Function SetAreasNetCodesFromNetNames * Set the .m_NetCode member of all copper areas, according to the area Net * Name * The SetNetCodesFromNetNames is an equivalent to net name, for fast * comparisons. * However the Netcode is an arbitrary equivalence, it must be set after each * netlist read * or net change * Must be called after pad netcodes are calculated * @return : error count * For non copper areas, netcode is set to 0 */ int BOARD::SetAreasNetCodesFromNetNames( void ) { int error_count = 0; for( int ii = 0; ii < GetAreaCount(); ii++ ) { if( !GetArea( ii )->IsOnCopperLayer() ) { GetArea( ii )->SetNet( 0 ); continue; } if( GetArea( ii )->GetNet() != 0 ) // i.e. if this zone is // connected to a net { const NETINFO_ITEM* net = FindNet( GetArea( ii )->m_Netname ); if( net ) { GetArea( ii )->SetNet( net->GetNet() ); } else { error_count++; GetArea( ii )->SetNet( -1 ); // keep Net Name and set // m_NetCode to -1 : error flag } } } return error_count; } #if defined(DEBUG) /** * Function Show * is used to output the object tree, currently for debugging only. * @param nestLevel An aid to prettier tree indenting, and is the level * of nesting of this object within the overall tree. * @param os The ostream& to output to. */ void BOARD::Show( int nestLevel, std::ostream& os ) { BOARD_ITEM* p; // for now, make it look like XML: NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str() << ">\n"; // specialization of the output: NestedSpace( nestLevel + 1, os ) << "\n"; p = m_Modules; for( ; p; p = p->Next() ) p->Show( nestLevel + 2, os ); NestedSpace( nestLevel + 1, os ) << "\n"; NestedSpace( nestLevel + 1, os ) << "\n"; p = m_Drawings; for( ; p; p = p->Next() ) p->Show( nestLevel + 2, os ); NestedSpace( nestLevel + 1, os ) << "\n"; NestedSpace( nestLevel + 1, os ) << "\n"; p = m_Track; for( ; p; p = p->Next() ) p->Show( nestLevel + 2, os ); NestedSpace( nestLevel + 1, os ) << "\n"; NestedSpace( nestLevel + 1, os ) << "\n"; p = m_Zone; for( ; p; p = p->Next() ) p->Show( nestLevel + 2, os ); NestedSpace( nestLevel + 1, os ) << "\n"; /* * NestedSpace( nestLevel+1, os ) << "\n"; * for( ZONE_CONTAINERS::iterator i=m_ZoneDescriptorList.begin(); * i!=m_ZoneDescriptorList.end(); ++i ) * (*i)->Show( nestLevel+2, os ); * NestedSpace( nestLevel+1, os ) << "\n"; */ p = (BOARD_ITEM*) m_Son; for( ; p; p = p->Next() ) { p->Show( nestLevel + 1, os ); } NestedSpace( nestLevel, os ) << "\n"; } #endif