/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2012 Wayne Stambaugh * Copyright (C) 1992-2015 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file class_pad_draw_functions.cpp */ #include #include #include #include #include #include #include #include #include #include // ID_TRACK_BUTT #include #include /* uncomment this line to show this pad with its specfic size and color * when it is not on copper layers, and only one solder mask layer or solder paste layer * is displayed for this pad * After testing this feature,I am not sure this is a good idea * but the code is left here. */ //#define SHOW_PADMASK_REAL_SIZE_AND_COLOR // Helper class to store parameters used to draw a pad PAD_DRAWINFO::PAD_DRAWINFO() { m_DrawPanel = NULL; m_DrawMode = GR_COPY; m_Color = BLACK; m_HoleColor = BLACK; // could be DARKGRAY; m_NPHoleColor = YELLOW; m_PadClearance = 0; m_Display_padnum = true; m_Display_netname = true; m_ShowPadFilled = true; m_ShowNCMark = true; m_ShowNotPlatedHole = false; m_IsPrinting = false; } void D_PAD::Draw( EDA_DRAW_PANEL* aPanel, wxDC* aDC, GR_DRAWMODE aDraw_mode, const wxPoint& aOffset ) { wxSize mask_margin; // margin (clearance) used for some non copper layers #ifdef SHOW_PADMASK_REAL_SIZE_AND_COLOR int showActualMaskSize = 0; /* Layer number if the actual pad size on mask layer can * be displayed i.e. if only one layer is shown for this pad * and this layer is a mask (solder mask or solder paste */ #endif if( m_Flags & DO_NOT_DRAW ) return; PAD_DRAWINFO drawInfo; drawInfo.m_Offset = aOffset; /* We can show/hide pads from the layer manager. * options are show/hide pads on front and/or back side of the board * For through pads, we hide them only if both sides are hidden. * smd pads on back are hidden for all layers (copper and technical layers) * on back side of the board * smd pads on front are hidden for all layers (copper and technical layers) * on front side of the board * ECO, edge and Draw layers and not considered */ BOARD* brd = GetBoard(); bool frontVisible = brd->IsElementVisible( PCB_VISIBLE( PAD_FR_VISIBLE ) ); bool backVisible = brd->IsElementVisible( PCB_VISIBLE( PAD_BK_VISIBLE ) ); if( !frontVisible && !backVisible ) return; // If pad is only on front side (no layer on back side) // and if hide front side pads is enabled, do not draw if( !frontVisible && !( m_layerMask & LSET::BackMask() ).any() ) return; // If pad is only on back side (no layer on front side) // and if hide back side pads is enabled, do not draw if( !backVisible && !( m_layerMask & LSET::FrontMask() ).any() ) return; PCB_BASE_FRAME* frame = (PCB_BASE_FRAME*) aPanel->GetParent(); wxCHECK_RET( frame != NULL, wxT( "Panel has no parent frame window." ) ); DISPLAY_OPTIONS* displ_opts = (DISPLAY_OPTIONS*)frame->GetDisplayOptions(); PCB_SCREEN* screen = frame->GetScreen(); if( displ_opts && displ_opts->m_DisplayPadFill == SKETCH ) drawInfo.m_ShowPadFilled = false; else drawInfo.m_ShowPadFilled = true; EDA_COLOR_T color = BLACK; if( m_layerMask[F_Cu] ) { color = brd->GetVisibleElementColor( PAD_FR_VISIBLE ); } if( m_layerMask[B_Cu] ) { color = ColorMix( color, brd->GetVisibleElementColor( PAD_BK_VISIBLE ) ); } if( color == BLACK ) // Not on a visible copper layer (i.e. still nothing to show) { // If the pad is on only one tech layer, use the layer color else use DARKGRAY LSET mask_non_copper_layers = m_layerMask & ~LSET::AllCuMask(); #ifdef SHOW_PADMASK_REAL_SIZE_AND_COLOR mask_non_copper_layers &= brd->GetVisibleLayers(); #endif LAYER_ID pad_layer = mask_non_copper_layers.ExtractLayer(); switch( (int) pad_layer ) { case UNDEFINED_LAYER: // More than one layer color = DARKGRAY; break; case UNSELECTED_LAYER: // Shouldn't really happen... break; default: color = brd->GetLayerColor( pad_layer ); #ifdef SHOW_PADMASK_REAL_SIZE_AND_COLOR showActualMaskSize = pad_layer; #endif } } // if SMD or connector pad and high contrast mode if( ( aDraw_mode & GR_ALLOW_HIGHCONTRAST ) && ( GetAttribute() == PAD_SMD || GetAttribute() == PAD_CONN ) && displ_opts && displ_opts->m_ContrastModeDisplay ) { // when routing tracks if( frame->GetToolId() == ID_TRACK_BUTT ) { LAYER_ID routeTop = screen->m_Route_Layer_TOP; LAYER_ID routeBot = screen->m_Route_Layer_BOTTOM; // if routing between copper and component layers, // or the current layer is one of said 2 external copper layers, // then highlight only the current layer. if( ( screen->m_Active_Layer == F_Cu || screen->m_Active_Layer == B_Cu ) || ( routeTop==F_Cu && routeBot==B_Cu ) || ( routeTop==B_Cu && routeBot==F_Cu ) ) { if( !IsOnLayer( screen->m_Active_Layer ) ) ColorTurnToDarkDarkGray( &color ); } // else routing between an internal signal layer and some other // layer. Grey out all PAD_SMD pads not on current or the single // selected external layer. else if( !IsOnLayer( screen->m_Active_Layer ) && !IsOnLayer( routeTop ) && !IsOnLayer( routeBot ) ) { ColorTurnToDarkDarkGray( &color ); } } // when not edting tracks, show PAD_SMD components not on active layer // as greyed out else { if( !IsOnLayer( screen->m_Active_Layer ) ) ColorTurnToDarkDarkGray( &color ); } } #ifdef SHOW_PADMASK_REAL_SIZE_AND_COLOR if( showActualMaskSize ) { switch( showActualMaskSize ) { case B_Mask: case F_Mask: mask_margin.x = mask_margin.y = GetSolderMaskMargin(); break; case B_Paste: case F_Paste: mask_margin = GetSolderPasteMargin(); break; default: // Another layer which has no margin to handle break; } } #endif // if Contrast mode is ON and a technical layer active, show pads on this // layer so we can see pads on paste or solder layer and the size of the // mask if( ( aDraw_mode & GR_ALLOW_HIGHCONTRAST ) && displ_opts && displ_opts->m_ContrastModeDisplay && !IsCopperLayer( screen->m_Active_Layer ) ) { if( IsOnLayer( screen->m_Active_Layer ) ) { color = brd->GetLayerColor( screen->m_Active_Layer ); // In high contrast mode, and if the active layer is the mask // layer shows the pad size with the mask clearance switch( screen->m_Active_Layer ) { case B_Mask: case F_Mask: mask_margin.x = mask_margin.y = GetSolderMaskMargin(); break; case B_Paste: case F_Paste: mask_margin = GetSolderPasteMargin(); break; default: break; } } else color = DARKDARKGRAY; } if( aDraw_mode & GR_HIGHLIGHT ) ColorChangeHighlightFlag( &color, !(aDraw_mode & GR_AND) ); ColorApplyHighlightFlag( &color ); bool DisplayIsol = displ_opts && displ_opts->m_DisplayPadIsol; if( !( m_layerMask & LSET::AllCuMask() ).any() ) DisplayIsol = false; if( ( GetAttribute() == PAD_HOLE_NOT_PLATED ) && brd->IsElementVisible( NON_PLATED_VISIBLE ) ) { drawInfo.m_ShowNotPlatedHole = true; drawInfo.m_NPHoleColor = brd->GetVisibleElementColor( NON_PLATED_VISIBLE ); } drawInfo.m_DrawMode = aDraw_mode; drawInfo.m_Color = color; drawInfo.m_DrawPanel = aPanel; drawInfo.m_Mask_margin = mask_margin; drawInfo.m_ShowNCMark = brd->IsElementVisible( PCB_VISIBLE( NO_CONNECTS_VISIBLE ) ); drawInfo.m_IsPrinting = screen->m_IsPrinting; SetAlpha( &color, 170 ); /* Get the pad clearance. This has a meaning only for Pcbnew. * for CvPcb GetClearance() creates debug errors because * there is no net classes so a call to GetClearance() is made only when * needed (never needed in CvPcb) */ drawInfo.m_PadClearance = DisplayIsol ? GetClearance() : 0; // Draw the pad number if( displ_opts && !displ_opts->m_DisplayPadNum ) drawInfo.m_Display_padnum = false; if( displ_opts && (( displ_opts ->m_DisplayNetNamesMode == 0 ) || ( displ_opts->m_DisplayNetNamesMode == 2 )) ) drawInfo.m_Display_netname = false; // Display net names is restricted to pads that are on the active layer // in high contrast mode display if( ( aDraw_mode & GR_ALLOW_HIGHCONTRAST ) && !IsOnLayer( screen->m_Active_Layer ) && displ_opts && displ_opts->m_ContrastModeDisplay ) drawInfo.m_Display_netname = false; DrawShape( aPanel->GetClipBox(), aDC, drawInfo ); } void D_PAD::DrawShape( EDA_RECT* aClipBox, wxDC* aDC, PAD_DRAWINFO& aDrawInfo ) { wxPoint coord[4]; double angle = m_Orient; int seg_width; GRSetDrawMode( aDC, aDrawInfo.m_DrawMode ); // calculate pad shape position : wxPoint shape_pos = ShapePos() - aDrawInfo.m_Offset; wxSize halfsize = m_Size; halfsize.x >>= 1; halfsize.y >>= 1; switch( GetShape() ) { case PAD_CIRCLE: if( aDrawInfo.m_ShowPadFilled ) GRFilledCircle( aClipBox, aDC, shape_pos.x, shape_pos.y, halfsize.x + aDrawInfo.m_Mask_margin.x, 0, aDrawInfo.m_Color, aDrawInfo.m_Color ); else GRCircle( aClipBox, aDC, shape_pos.x, shape_pos.y, halfsize.x + aDrawInfo.m_Mask_margin.x, m_PadSketchModePenSize, aDrawInfo.m_Color ); if( aDrawInfo.m_PadClearance ) { GRCircle( aClipBox, aDC, shape_pos.x, shape_pos.y, halfsize.x + aDrawInfo.m_PadClearance, 0, aDrawInfo.m_Color ); } break; case PAD_OVAL: { wxPoint segStart, segEnd; seg_width = BuildSegmentFromOvalShape(segStart, segEnd, angle, aDrawInfo.m_Mask_margin); segStart += shape_pos; segEnd += shape_pos; if( aDrawInfo.m_ShowPadFilled ) { GRFillCSegm( aClipBox, aDC, segStart.x, segStart.y, segEnd.x, segEnd.y, seg_width, aDrawInfo.m_Color ); } else { GRCSegm( aClipBox, aDC, segStart.x, segStart.y, segEnd.x, segEnd.y, seg_width, m_PadSketchModePenSize, aDrawInfo.m_Color ); } // Draw the clearance line if( aDrawInfo.m_PadClearance ) { seg_width += 2 * aDrawInfo.m_PadClearance; GRCSegm( aClipBox, aDC, segStart.x, segStart.y, segEnd.x, segEnd.y, seg_width, aDrawInfo.m_Color ); } } break; case PAD_RECT: case PAD_TRAPEZOID: BuildPadPolygon( coord, aDrawInfo.m_Mask_margin, angle ); for( int ii = 0; ii < 4; ii++ ) coord[ii] += shape_pos; GRClosedPoly( aClipBox, aDC, 4, coord, aDrawInfo.m_ShowPadFilled, aDrawInfo.m_ShowPadFilled ? 0 : m_PadSketchModePenSize, aDrawInfo.m_Color, aDrawInfo.m_Color ); if( aDrawInfo.m_PadClearance ) { BuildPadPolygon( coord, wxSize( aDrawInfo.m_PadClearance, aDrawInfo.m_PadClearance ), angle ); for( int ii = 0; ii < 4; ii++ ) coord[ii] += shape_pos; GRClosedPoly( aClipBox, aDC, 4, coord, 0, aDrawInfo.m_Color, aDrawInfo.m_Color ); } break; default: break; } // Draw the pad hole wxPoint holepos = m_Pos - aDrawInfo.m_Offset; int hole = m_Drill.x >> 1; bool drawhole = hole > 0; if( !aDrawInfo.m_ShowPadFilled && !aDrawInfo.m_ShowNotPlatedHole ) drawhole = false; if( drawhole ) { bool blackpenstate = false; if( aDrawInfo.m_IsPrinting ) { blackpenstate = GetGRForceBlackPenState(); GRForceBlackPen( false ); aDrawInfo.m_HoleColor = WHITE; } if( aDrawInfo.m_DrawMode != GR_XOR ) GRSetDrawMode( aDC, GR_COPY ); else GRSetDrawMode( aDC, GR_XOR ); EDA_COLOR_T hole_color = aDrawInfo.m_HoleColor; if( aDrawInfo. m_ShowNotPlatedHole ) // Draw a specific hole color hole_color = aDrawInfo.m_NPHoleColor; switch( GetDrillShape() ) { case PAD_DRILL_CIRCLE: if( aDC->LogicalToDeviceXRel( hole ) > MIN_DRAW_WIDTH ) GRFilledCircle( aClipBox, aDC, holepos.x, holepos.y, hole, 0, hole_color, hole_color ); break; case PAD_DRILL_OBLONG: { wxPoint drl_start, drl_end; GetOblongDrillGeometry( drl_start, drl_end, seg_width ); GRFilledSegment( aClipBox, aDC, holepos + drl_start, holepos + drl_end, seg_width, hole_color ); } break; default: break; } if( aDrawInfo.m_IsPrinting ) GRForceBlackPen( blackpenstate ); } GRSetDrawMode( aDC, aDrawInfo.m_DrawMode ); // Draw "No connect" ( / or \ or cross X ) if necessary if( GetNetCode() == 0 && aDrawInfo.m_ShowNCMark ) { int dx0 = std::min( halfsize.x, halfsize.y ); EDA_COLOR_T nc_color = BLUE; if( m_layerMask[F_Cu] ) /* Draw \ */ GRLine( aClipBox, aDC, holepos.x - dx0, holepos.y - dx0, holepos.x + dx0, holepos.y + dx0, 0, nc_color ); if( m_layerMask[B_Cu] ) // Draw / GRLine( aClipBox, aDC, holepos.x + dx0, holepos.y - dx0, holepos.x - dx0, holepos.y + dx0, 0, nc_color ); } if( aDrawInfo.m_DrawMode != GR_XOR ) GRSetDrawMode( aDC, GR_COPY ); else GRSetDrawMode( aDC, GR_XOR ); // Draw the pad number if( !aDrawInfo.m_Display_padnum && !aDrawInfo.m_Display_netname ) return; wxPoint tpos0 = shape_pos; // Position of the centre of text wxPoint tpos = tpos0; wxSize AreaSize; // size of text area, normalized to AreaSize.y < AreaSize.x int shortname_len = 0; if( aDrawInfo.m_Display_netname ) shortname_len = GetShortNetname().Len(); if( GetShape() == PAD_CIRCLE ) angle = 0; AreaSize = m_Size; if( m_Size.y > m_Size.x ) { angle += 900; AreaSize.x = m_Size.y; AreaSize.y = m_Size.x; } if( shortname_len > 0 ) // if there is a netname, provides room to display this netname { AreaSize.y /= 2; // Text used only the upper area of the // pad. The lower area displays the net name tpos.y -= AreaSize.y / 2; } // Calculate the position of text, that is the middle point of the upper // area of the pad RotatePoint( &tpos, shape_pos, angle ); // Draw text with an angle between -90 deg and + 90 deg double t_angle = angle; NORMALIZE_ANGLE_90( t_angle ); /* Note: in next calculations, texte size is calculated for 3 or more * chars. Of course, pads numbers and nets names can have less than 3 * chars. but after some tries, i found this is gives the best look */ #define MIN_CHAR_COUNT 3 wxString buffer; int tsize; EDA_RECT* clipBox = aDrawInfo.m_DrawPanel? aDrawInfo.m_DrawPanel->GetClipBox() : NULL; if( aDrawInfo.m_Display_padnum ) { StringPadName( buffer ); int numpad_len = buffer.Len(); numpad_len = std::max( numpad_len, MIN_CHAR_COUNT ); tsize = std::min( AreaSize.y, AreaSize.x / numpad_len ); if( aDC->LogicalToDeviceXRel( tsize ) >= MIN_TEXT_SIZE ) // Not drawable when size too small. { // tsize reserve room for marges and segments thickness tsize = ( tsize * 7 ) / 10; DrawGraphicHaloText( clipBox, aDC, tpos, aDrawInfo.m_Color, BLACK, WHITE, buffer, t_angle, wxSize( tsize , tsize ), GR_TEXT_HJUSTIFY_CENTER, GR_TEXT_VJUSTIFY_CENTER, tsize / 7, false, false ); } } // display the short netname, if exists if( shortname_len == 0 ) return; shortname_len = std::max( shortname_len, MIN_CHAR_COUNT ); tsize = std::min( AreaSize.y, AreaSize.x / shortname_len ); if( aDC->LogicalToDeviceXRel( tsize ) >= MIN_TEXT_SIZE ) // Not drawable in size too small. { tpos = tpos0; if( aDrawInfo.m_Display_padnum ) tpos.y += AreaSize.y / 2; RotatePoint( &tpos, shape_pos, angle ); // tsize reserve room for marges and segments thickness tsize = ( tsize * 7 ) / 10; DrawGraphicHaloText( clipBox, aDC, tpos, aDrawInfo.m_Color, BLACK, WHITE, GetShortNetname(), t_angle, wxSize( tsize, tsize ), GR_TEXT_HJUSTIFY_CENTER, GR_TEXT_VJUSTIFY_CENTER, tsize / 7, false, false ); } } /** * Function BuildSegmentFromOvalShape * Has meaning only for OVAL (and ROUND) pads. * Build an equivalent segment having the same shape as the OVAL shape, * aSegStart and aSegEnd are the ending points of the equivalent segment of the shape * aRotation is the asked rotation of the segment (usually m_Orient) */ int D_PAD::BuildSegmentFromOvalShape(wxPoint& aSegStart, wxPoint& aSegEnd, double aRotation, const wxSize& aMargin) const { int width; if( m_Size.y < m_Size.x ) // Build an horizontal equiv segment { int delta = ( m_Size.x - m_Size.y ) / 2; aSegStart.x = -delta - aMargin.x; aSegStart.y = 0; aSegEnd.x = delta + aMargin.x; aSegEnd.y = 0; width = m_Size.y + ( aMargin.y * 2 ); } else // Vertical oval: build a vertical equiv segment { int delta = ( m_Size.y -m_Size.x ) / 2; aSegStart.x = 0; aSegStart.y = -delta - aMargin.y; aSegEnd.x = 0; aSegEnd.y = delta + aMargin.y; width = m_Size.x + ( aMargin.x * 2 ); } if( aRotation ) { RotatePoint( &aSegStart, aRotation); RotatePoint( &aSegEnd, aRotation); } return width; } void D_PAD::BuildPadPolygon( wxPoint aCoord[4], wxSize aInflateValue, double aRotation ) const { wxSize delta; wxSize halfsize; halfsize.x = m_Size.x >> 1; halfsize.y = m_Size.y >> 1; switch( GetShape() ) { case PAD_RECT: // For rectangular shapes, inflate is easy halfsize += aInflateValue; // Verify if do not deflate more than than size // Only possible for inflate negative values. if( halfsize.x < 0 ) halfsize.x = 0; if( halfsize.y < 0 ) halfsize.y = 0; break; case PAD_TRAPEZOID: // Trapezoidal pad: verify delta values delta.x = ( m_DeltaSize.x >> 1 ); delta.y = ( m_DeltaSize.y >> 1 ); // be sure delta values are not to large if( (delta.x < 0) && (delta.x <= -halfsize.y) ) delta.x = -halfsize.y + 1; if( (delta.x > 0) && (delta.x >= halfsize.y) ) delta.x = halfsize.y - 1; if( (delta.y < 0) && (delta.y <= -halfsize.x) ) delta.y = -halfsize.x + 1; if( (delta.y > 0) && (delta.y >= halfsize.x) ) delta.y = halfsize.x - 1; break; default: // is used only for rect and trap. pads return; } // Build the basic rectangular or trapezoid shape // delta is null for rectangular shapes aCoord[0].x = -halfsize.x - delta.y; // lower left aCoord[0].y = +halfsize.y + delta.x; aCoord[1].x = -halfsize.x + delta.y; // upper left aCoord[1].y = -halfsize.y - delta.x; aCoord[2].x = +halfsize.x - delta.y; // upper right aCoord[2].y = -halfsize.y + delta.x; aCoord[3].x = +halfsize.x + delta.y; // lower right aCoord[3].y = +halfsize.y - delta.x; // Offsetting the trapezoid shape id needed // It is assumed delta.x or/and delta.y == 0 if( GetShape() == PAD_TRAPEZOID && (aInflateValue.x != 0 || aInflateValue.y != 0) ) { double angle; wxSize corr; if( delta.y ) // lower and upper segment is horizontal { // Calculate angle of left (or right) segment with vertical axis angle = atan2( m_DeltaSize.y, m_Size.y ); // left and right sides are moved by aInflateValue.x in their perpendicular direction // We must calculate the corresponding displacement on the horizontal axis // that is delta.x +- corr.x depending on the corner corr.x = KiROUND( tan( angle ) * aInflateValue.x ); delta.x = KiROUND( aInflateValue.x / cos( angle ) ); // Horizontal sides are moved up and down by aInflateValue.y delta.y = aInflateValue.y; // corr.y = 0 by the constructor } else if( delta.x ) // left and right segment is vertical { // Calculate angle of lower (or upper) segment with horizontal axis angle = atan2( m_DeltaSize.x, m_Size.x ); // lower and upper sides are moved by aInflateValue.x in their perpendicular direction // We must calculate the corresponding displacement on the vertical axis // that is delta.y +- corr.y depending on the corner corr.y = KiROUND( tan( angle ) * aInflateValue.y ); delta.y = KiROUND( aInflateValue.y / cos( angle ) ); // Vertical sides are moved left and right by aInflateValue.x delta.x = aInflateValue.x; // corr.x = 0 by the constructor } else // the trapezoid is a rectangle { delta = aInflateValue; // this pad is rectangular (delta null). } aCoord[0].x += -delta.x - corr.x; // lower left aCoord[0].y += delta.y + corr.y; aCoord[1].x += -delta.x + corr.x; // upper left aCoord[1].y += -delta.y - corr.y; aCoord[2].x += delta.x - corr.x; // upper right aCoord[2].y += -delta.y + corr.y; aCoord[3].x += delta.x + corr.x; // lower right aCoord[3].y += delta.y - corr.y; /* test coordinates and clamp them if the offset correction is too large: * Note: if a coordinate is bad, the other "symmetric" coordinate is bad * So when a bad coordinate is found, the 2 symmetric coordinates * are set to the minimun value (0) */ if( aCoord[0].x > 0 ) // lower left x coordinate must be <= 0 aCoord[0].x = aCoord[3].x = 0; if( aCoord[1].x > 0 ) // upper left x coordinate must be <= 0 aCoord[1].x = aCoord[2].x = 0; if( aCoord[0].y < 0 ) // lower left y coordinate must be >= 0 aCoord[0].y = aCoord[1].y = 0; if( aCoord[3].y < 0 ) // lower right y coordinate must be >= 0 aCoord[3].y = aCoord[2].y = 0; } if( aRotation ) { for( int ii = 0; ii < 4; ii++ ) RotatePoint( &aCoord[ii], aRotation ); } }