/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2013 CERN * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include template int sgn( T aVal ) { return ( T( 0 ) < aVal ) - ( aVal < T( 0 ) ); } bool SEG::PointCloserThan( const VECTOR2I& aP, int aDist ) const { // See http://geomalgorithms.com/a02-_lines.html for some explanations and ideas. VECTOR2I d = B - A; ecoord dist_sq = (ecoord) aDist * aDist; SEG::ecoord l_squared = d.Dot( d ); SEG::ecoord t = d.Dot( aP - A ); if( t <= 0 || !l_squared ) return ( aP - A ).SquaredEuclideanNorm() < dist_sq; else if( t >= l_squared ) return ( aP - B ).SquaredEuclideanNorm() < dist_sq; // JPC: This code is not trivial and is not commented // and does not work for d.x or d.y = -1...1 // I am guessing it is here for calculation time optimization. // if someone can understand it, please fix it. // It can be tested with a segment having d.x or d.y value // is -1 or +1 ("this" is a quasi vertical or horizontal segment) int dxdy = std::abs( d.x ) - std::abs( d.y ); if( ( dxdy >= -1 && dxdy <= 1 ) // quasi 45 deg segment /*|| std::abs( d.x ) <= 1 // quasi horizontal segment || std::abs( d.y ) <= 1 // quasi vertical segment */ ) { int ca = -sgn( d.y ); int cb = sgn( d.x ); int cc = -ca * A.x - cb * A.y; ecoord num = (ecoord) ca * aP.x + (ecoord) cb * aP.y + cc; num *= num; if( ca && cb ) num >>= 1; if( num > ( dist_sq + 100 ) ) return false; else if( num < ( dist_sq - 100 ) ) return true; } VECTOR2I nearest; nearest.x = A.x + rescale( t, (ecoord) d.x, l_squared ); nearest.y = A.y + rescale( t, (ecoord) d.y, l_squared ); return ( nearest - aP ).SquaredEuclideanNorm() <= dist_sq; } SEG::ecoord SEG::SquaredDistance( const SEG& aSeg ) const { // fixme: rather inefficient.... if( Intersect( aSeg ) ) return 0; const VECTOR2I pts[4] = { aSeg.NearestPoint( A ) - A, aSeg.NearestPoint( B ) - B, NearestPoint( aSeg.A ) - aSeg.A, NearestPoint( aSeg.B ) - aSeg.B }; ecoord m = VECTOR2I::ECOORD_MAX; for( int i = 0; i < 4; i++ ) m = std::min( m, pts[i].SquaredEuclideanNorm() ); return m; } const VECTOR2I SEG::NearestPoint( const SEG& aSeg ) const { if( auto p = Intersect( aSeg ) ) return *p; const VECTOR2I pts_origin[4] = { aSeg.NearestPoint( A ), aSeg.NearestPoint( B ), NearestPoint( aSeg.A ), NearestPoint( aSeg.B ) }; const ecoord pts_dist[4] = { ( pts_origin[0] - A ).SquaredEuclideanNorm(), ( pts_origin[1] - B ).SquaredEuclideanNorm(), ( pts_origin[2] - aSeg.A ).SquaredEuclideanNorm(), ( pts_origin[3] - aSeg.B ).SquaredEuclideanNorm() }; int min_i = 0; for( int i = 0; i < 4; i++ ) { if( pts_dist[i] < pts_dist[min_i] ) min_i = i; } return pts_origin[min_i]; } OPT_VECTOR2I SEG::Intersect( const SEG& aSeg, bool aIgnoreEndpoints, bool aLines ) const { const VECTOR2I e( B - A ); const VECTOR2I f( aSeg.B - aSeg.A ); const VECTOR2I ac( aSeg.A - A ); ecoord d = f.Cross( e ); ecoord p = f.Cross( ac ); ecoord q = e.Cross( ac ); if( d == 0 ) return OPT_VECTOR2I(); if( !aLines && d > 0 && ( q < 0 || q > d || p < 0 || p > d ) ) return OPT_VECTOR2I(); if( !aLines && d < 0 && ( q < d || p < d || p > 0 || q > 0 ) ) return OPT_VECTOR2I(); if( !aLines && aIgnoreEndpoints && ( q == 0 || q == d ) && ( p == 0 || p == d ) ) return OPT_VECTOR2I(); VECTOR2I ip( aSeg.A.x + rescale( q, (ecoord) f.x, d ), aSeg.A.y + rescale( q, (ecoord) f.y, d ) ); return ip; } bool SEG::ccw( const VECTOR2I& aA, const VECTOR2I& aB, const VECTOR2I& aC ) const { return (ecoord) ( aC.y - aA.y ) * ( aB.x - aA.x ) > (ecoord) ( aB.y - aA.y ) * ( aC.x - aA.x ); } bool SEG::Collide( const SEG& aSeg, int aClearance ) const { // check for intersection // fixme: move to a method if( ccw( A, aSeg.A, aSeg.B ) != ccw( B, aSeg.A, aSeg.B ) && ccw( A, B, aSeg.A ) != ccw( A, B, aSeg.B ) ) return true; #define CHK( _seg, _pt ) \ if( (_seg).PointCloserThan( _pt, aClearance ) ) return true; CHK( *this, aSeg.A ); CHK( *this, aSeg.B ); CHK( aSeg, A ); CHK( aSeg, B ); #undef CHK return false; } bool SEG::Contains( const VECTOR2I& aP ) const { return PointCloserThan( aP, 1 ); }