/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include // for KiROUND #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using KIGFX::PCB_PAINTER; using KIGFX::PCB_RENDER_SETTINGS; PAD::PAD( FOOTPRINT* parent ) : BOARD_CONNECTED_ITEM( parent, PCB_PAD_T ) { m_size.x = m_size.y = Mils2iu( 60 ); // Default pad size 60 mils. m_drill.x = m_drill.y = Mils2iu( 30 ); // Default drill size 30 mils. m_orient = ANGLE_0; m_lengthPadToDie = 0; if( m_parent && m_parent->Type() == PCB_FOOTPRINT_T ) m_pos = GetParent()->GetPosition(); SetShape( PAD_SHAPE::CIRCLE ); // Default pad shape is PAD_CIRCLE. SetAnchorPadShape( PAD_SHAPE::CIRCLE ); // Default shape for custom shaped pads // is PAD_CIRCLE. SetDrillShape( PAD_DRILL_SHAPE_CIRCLE ); // Default pad drill shape is a circle. m_attribute = PAD_ATTRIB::PTH; // Default pad type is plated through hole SetProperty( PAD_PROP::NONE ); // no special fabrication property m_localClearance = 0; m_localSolderMaskMargin = 0; m_localSolderPasteMargin = 0; m_localSolderPasteMarginRatio = 0.0; // Parameters for round rect only: m_roundedCornerScale = 0.25; // from IPC-7351C standard // Parameters for chamfered rect only: m_chamferScale = 0.2; // Size of chamfer: ratio of smallest of X,Y size m_chamferPositions = RECT_NO_CHAMFER; // No chamfered corner m_zoneConnection = ZONE_CONNECTION::INHERITED; // Use parent setting by default m_thermalSpokeWidth = 0; // Use parent setting by default m_thermalSpokeAngle = ANGLE_45; // Default for circular pads m_thermalGap = 0; // Use parent setting by default m_customShapeClearanceArea = CUST_PAD_SHAPE_IN_ZONE_OUTLINE; // Set layers mask to default for a standard thru hole pad. m_layerMask = PTHMask(); SetSubRatsnest( 0 ); // used in ratsnest calculations SetDirty(); m_effectiveBoundingRadius = 0; m_removeUnconnectedLayer = false; m_keepTopBottomLayer = true; } PAD::PAD( const PAD& aOther ) : BOARD_CONNECTED_ITEM( aOther.GetParent(), PCB_PAD_T ) { PAD::operator=( aOther ); const_cast( m_Uuid ) = aOther.m_Uuid; } PAD& PAD::operator=( const PAD &aOther ) { BOARD_CONNECTED_ITEM::operator=( aOther ); ImportSettingsFrom( aOther ); SetPadToDieLength( aOther.GetPadToDieLength() ); SetPosition( aOther.GetPosition() ); SetPos0( aOther.GetPos0() ); SetNumber( aOther.GetNumber() ); SetPinType( aOther.GetPinType() ); SetPinFunction( aOther.GetPinFunction() ); SetSubRatsnest( aOther.GetSubRatsnest() ); m_effectiveBoundingRadius = aOther.m_effectiveBoundingRadius; m_removeUnconnectedLayer = aOther.m_removeUnconnectedLayer; m_keepTopBottomLayer = aOther.m_keepTopBottomLayer; return *this; } bool PAD::CanHaveNumber() const { // Aperture pads don't get a number if( IsAperturePad() ) return false; // NPTH pads don't get numbers if( GetAttribute() == PAD_ATTRIB::NPTH ) return false; return true; } bool PAD::IsLocked() const { if( GetParent() && GetParent()->IsLocked() ) return true; return BOARD_ITEM::IsLocked(); }; LSET PAD::PTHMask() { static LSET saved = LSET::AllCuMask() | LSET( 2, F_Mask, B_Mask ); return saved; } LSET PAD::SMDMask() { static LSET saved( 3, F_Cu, F_Paste, F_Mask ); return saved; } LSET PAD::ConnSMDMask() { static LSET saved( 2, F_Cu, F_Mask ); return saved; } LSET PAD::UnplatedHoleMask() { static LSET saved = LSET( 4, F_Cu, B_Cu, F_Mask, B_Mask ); return saved; } LSET PAD::ApertureMask() { static LSET saved( 1, F_Paste ); return saved; } bool PAD::IsFlipped() const { FOOTPRINT* parent = GetParent(); return ( parent && parent->GetLayer() == B_Cu ); } PCB_LAYER_ID PAD::GetLayer() const { return BOARD_ITEM::GetLayer(); } PCB_LAYER_ID PAD::GetPrincipalLayer() const { if( m_attribute == PAD_ATTRIB::SMD || m_attribute == PAD_ATTRIB::CONN || GetLayerSet().none() ) return m_layer; else return GetLayerSet().Seq().front(); } bool PAD::FlashLayer( LSET aLayers ) const { for( PCB_LAYER_ID layer : aLayers.Seq() ) { if( FlashLayer( layer ) ) return true; } return false; } bool PAD::FlashLayer( int aLayer ) const { if( aLayer != UNDEFINED_LAYER && !IsOnLayer( static_cast( aLayer ) ) ) return false; if( aLayer == UNDEFINED_LAYER ) return true; if( GetAttribute() == PAD_ATTRIB::NPTH && IsCopperLayer( aLayer ) ) { if( GetShape() == PAD_SHAPE::CIRCLE && GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE ) { if( GetOffset() == VECTOR2I( 0, 0 ) && GetDrillSize().x >= GetSize().x ) return false; } else if( GetShape() == PAD_SHAPE::OVAL && GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ) { if( GetOffset() == VECTOR2I( 0, 0 ) && GetDrillSize().x >= GetSize().x && GetDrillSize().y >= GetSize().y ) { return false; } } } if( LSET::FrontBoardTechMask().test( aLayer ) ) aLayer = F_Cu; else if( LSET::BackBoardTechMask().test( aLayer ) ) aLayer = B_Cu; if( GetAttribute() == PAD_ATTRIB::PTH && IsCopperLayer( aLayer ) ) { /// Heat sink pads always get copper if( GetProperty() == PAD_PROP::HEATSINK ) return true; if( !m_removeUnconnectedLayer ) return true; // Plated through hole pads need copper on the top/bottom layers for proper soldering // Unless the user has removed them in the pad dialog if( m_keepTopBottomLayer && ( aLayer == F_Cu || aLayer == B_Cu ) ) return true; if( const BOARD* board = GetBoard() ) { // Must be static to keep from raising its ugly head in performance profiles static std::initializer_list types = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T }; // Do not check zones. Doing so results in race conditions when the via collides with // two different zones of different priorities. // See https://gitlab.com/kicad/code/kicad/-/issues/11299. return board->GetConnectivity()->IsConnectedOnLayer( this, aLayer, types, true ); } } return true; } int PAD::GetRoundRectCornerRadius() const { return KiROUND( std::min( m_size.x, m_size.y ) * m_roundedCornerScale ); } void PAD::SetRoundRectCornerRadius( double aRadius ) { int min_r = std::min( m_size.x, m_size.y ); if( min_r > 0 ) SetRoundRectRadiusRatio( aRadius / min_r ); } void PAD::SetRoundRectRadiusRatio( double aRadiusScale ) { m_roundedCornerScale = std::max( 0.0, std::min( aRadiusScale, 0.5 ) ); SetDirty(); } void PAD::SetChamferRectRatio( double aChamferScale ) { m_chamferScale = std::max( 0.0, std::min( aChamferScale, 0.5 ) ); SetDirty(); } const std::shared_ptr& PAD::GetEffectivePolygon() const { if( m_polyDirty ) BuildEffectivePolygon(); return m_effectivePolygon; } std::shared_ptr PAD::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const { if( ( GetAttribute() == PAD_ATTRIB::PTH && aFlash == FLASHING::NEVER_FLASHED ) || ( aLayer != UNDEFINED_LAYER && !FlashLayer( aLayer ) ) ) { if( GetAttribute() == PAD_ATTRIB::PTH ) return GetEffectiveHoleShape(); else return std::make_shared(); } if( m_shapesDirty ) BuildEffectiveShapes( aLayer ); return m_effectiveShape; } std::shared_ptr PAD::GetEffectiveHoleShape() const { if( m_shapesDirty ) BuildEffectiveShapes( UNDEFINED_LAYER ); return m_effectiveHoleShape; } int PAD::GetBoundingRadius() const { if( m_polyDirty ) BuildEffectivePolygon(); return m_effectiveBoundingRadius; } void PAD::BuildEffectiveShapes( PCB_LAYER_ID aLayer ) const { std::lock_guard RAII_lock( m_shapesBuildingLock ); // If we had to wait for the lock then we were probably waiting for someone else to // finish rebuilding the shapes. So check to see if they're clean now. if( !m_shapesDirty ) return; const BOARD* board = GetBoard(); int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF; m_effectiveShape = std::make_shared(); m_effectiveHoleShape = nullptr; auto add = [this]( SHAPE* aShape ) { m_effectiveShape->AddShape( aShape ); }; VECTOR2I shapePos = ShapePos(); // Fetch only once; rotation involves trig PAD_SHAPE effectiveShape = GetShape(); if( GetShape() == PAD_SHAPE::CUSTOM ) effectiveShape = GetAnchorPadShape(); switch( effectiveShape ) { case PAD_SHAPE::CIRCLE: add( new SHAPE_CIRCLE( shapePos, m_size.x / 2 ) ); break; case PAD_SHAPE::OVAL: if( m_size.x == m_size.y ) // the oval pad is in fact a circle { add( new SHAPE_CIRCLE( shapePos, m_size.x / 2 ) ); } else { VECTOR2I half_size = m_size / 2; int half_width = std::min( half_size.x, half_size.y ); VECTOR2I half_len( half_size.x - half_width, half_size.y - half_width ); RotatePoint( half_len, m_orient ); add( new SHAPE_SEGMENT( shapePos - half_len, shapePos + half_len, half_width * 2 ) ); } break; case PAD_SHAPE::RECT: case PAD_SHAPE::TRAPEZOID: case PAD_SHAPE::ROUNDRECT: { int r = ( effectiveShape == PAD_SHAPE::ROUNDRECT ) ? GetRoundRectCornerRadius() : 0; VECTOR2I half_size( m_size.x / 2, m_size.y / 2 ); VECTOR2I trap_delta( 0, 0 ); if( r ) { half_size -= VECTOR2I( r, r ); // Avoid degenerated shapes (0 length segments) that always create issues // For roundrect pad very near a circle, use only a circle const int min_len = Millimeter2iu( 0.0001); if( half_size.x < min_len && half_size.y < min_len ) { add( new SHAPE_CIRCLE( shapePos, r ) ); break; } } else if( effectiveShape == PAD_SHAPE::TRAPEZOID ) { trap_delta = m_deltaSize / 2; } SHAPE_LINE_CHAIN corners; corners.Append( -half_size.x - trap_delta.y, half_size.y + trap_delta.x ); corners.Append( half_size.x + trap_delta.y, half_size.y - trap_delta.x ); corners.Append( half_size.x - trap_delta.y, -half_size.y + trap_delta.x ); corners.Append( -half_size.x + trap_delta.y, -half_size.y - trap_delta.x ); corners.Rotate( m_orient ); corners.Move( shapePos ); // GAL renders rectangles faster than 4-point polygons so it's worth checking if our // body shape is a rectangle. if( corners.PointCount() == 4 && ( ( corners.CPoint( 0 ).y == corners.CPoint( 1 ).y && corners.CPoint( 1 ).x == corners.CPoint( 2 ).x && corners.CPoint( 2 ).y == corners.CPoint( 3 ).y && corners.CPoint( 3 ).x == corners.CPoint( 0 ).x ) || ( corners.CPoint( 0 ).x == corners.CPoint( 1 ).x && corners.CPoint( 1 ).y == corners.CPoint( 2 ).y && corners.CPoint( 2 ).x == corners.CPoint( 3 ).x && corners.CPoint( 3 ).y == corners.CPoint( 0 ).y ) ) ) { int width = std::abs( corners.CPoint( 2 ).x - corners.CPoint( 0 ).x ); int height = std::abs( corners.CPoint( 2 ).y - corners.CPoint( 0 ).y ); VECTOR2I pos( std::min( corners.CPoint( 2 ).x, corners.CPoint( 0 ).x ), std::min( corners.CPoint( 2 ).y, corners.CPoint( 0 ).y ) ); add( new SHAPE_RECT( pos, width, height ) ); } else { add( new SHAPE_SIMPLE( corners ) ); } if( r ) { add( new SHAPE_SEGMENT( corners.CPoint( 0 ), corners.CPoint( 1 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 1 ), corners.CPoint( 2 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 2 ), corners.CPoint( 3 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 3 ), corners.CPoint( 0 ), r * 2 ) ); } } break; case PAD_SHAPE::CHAMFERED_RECT: { SHAPE_POLY_SET outline; TransformRoundChamferedRectToPolygon( outline, shapePos, GetSize(), m_orient, GetRoundRectCornerRadius(), GetChamferRectRatio(), GetChamferPositions(), 0, maxError, ERROR_INSIDE ); add( new SHAPE_SIMPLE( outline.COutline( 0 ) ) ); } break; default: wxFAIL_MSG( wxT( "PAD::buildEffectiveShapes: Unsupported pad shape: " ) + PAD_SHAPE_T_asString( effectiveShape ) ); break; } if( GetShape() == PAD_SHAPE::CUSTOM ) { for( const std::shared_ptr& primitive : m_editPrimitives ) { for( SHAPE* shape : primitive->MakeEffectiveShapes() ) { shape->Rotate( m_orient ); shape->Move( shapePos ); add( shape ); } } } BOX2I bbox = m_effectiveShape->BBox(); m_effectiveBoundingBox = EDA_RECT( bbox ); // Hole shape VECTOR2I half_size = m_drill / 2; int half_width = std::min( half_size.x, half_size.y ); VECTOR2I half_len( half_size.x - half_width, half_size.y - half_width ); RotatePoint( half_len, m_orient ); m_effectiveHoleShape = std::make_shared( m_pos - half_len, m_pos + half_len, half_width * 2 ); bbox = m_effectiveHoleShape->BBox(); m_effectiveBoundingBox.Merge( EDA_RECT( bbox ) ); // All done m_shapesDirty = false; } void PAD::BuildEffectivePolygon() const { std::lock_guard RAII_lock( m_polyBuildingLock ); // If we had to wait for the lock then we were probably waiting for someone else to // finish rebuilding the shapes. So check to see if they're clean now. if( !m_polyDirty ) return; const BOARD* board = GetBoard(); int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF; // Polygon m_effectivePolygon = std::make_shared(); TransformShapeWithClearanceToPolygon( *m_effectivePolygon, UNDEFINED_LAYER, 0, maxError, ERROR_INSIDE ); // Bounding radius // // PADSTACKS TODO: these will both need to cycle through all layers to get the largest // values.... m_effectiveBoundingRadius = 0; for( int cnt = 0; cnt < m_effectivePolygon->OutlineCount(); ++cnt ) { const SHAPE_LINE_CHAIN& poly = m_effectivePolygon->COutline( cnt ); for( int ii = 0; ii < poly.PointCount(); ++ii ) { int dist = KiROUND( ( poly.CPoint( ii ) - m_pos ).EuclideanNorm() ); m_effectiveBoundingRadius = std::max( m_effectiveBoundingRadius, dist ); } } // All done m_polyDirty = false; } const EDA_RECT PAD::GetBoundingBox() const { if( m_shapesDirty ) BuildEffectiveShapes( UNDEFINED_LAYER ); return m_effectiveBoundingBox; } void PAD::SetDrawCoord() { FOOTPRINT* parentFootprint = static_cast( m_parent ); m_pos = m_pos0; if( parentFootprint == nullptr ) return; RotatePoint( &m_pos.x, &m_pos.y, parentFootprint->GetOrientation() ); m_pos += parentFootprint->GetPosition(); SetDirty(); } void PAD::SetLocalCoord() { FOOTPRINT* parentFootprint = static_cast( m_parent ); if( parentFootprint == nullptr ) { m_pos0 = m_pos; return; } m_pos0 = m_pos - parentFootprint->GetPosition(); RotatePoint( &m_pos0.x, &m_pos0.y, -parentFootprint->GetOrientation() ); } void PAD::SetAttribute( PAD_ATTRIB aAttribute ) { m_attribute = aAttribute; if( aAttribute == PAD_ATTRIB::SMD ) m_drill = VECTOR2I( 0, 0 ); SetDirty(); } void PAD::SetProperty( PAD_PROP aProperty ) { m_property = aProperty; SetDirty(); } void PAD::SetOrientation( const EDA_ANGLE& aAngle ) { m_orient = aAngle; m_orient.Normalize(); SetDirty(); } void PAD::Flip( const VECTOR2I& aCentre, bool aFlipLeftRight ) { if( aFlipLeftRight ) { MIRROR( m_pos.x, aCentre.x ); MIRROR( m_pos0.x, 0 ); MIRROR( m_offset.x, 0 ); MIRROR( m_deltaSize.x, 0 ); } else { MIRROR( m_pos.y, aCentre.y ); MIRROR( m_pos0.y, 0 ); MIRROR( m_offset.y, 0 ); MIRROR( m_deltaSize.y, 0 ); } SetOrientation( -GetOrientation() ); auto mirrorBitFlags = []( int& aBitfield, int a, int b ) { bool temp = aBitfield & a; if( aBitfield & b ) aBitfield |= a; else aBitfield &= ~a; if( temp ) aBitfield |= b; else aBitfield &= ~b; }; if( aFlipLeftRight ) { mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_TOP_RIGHT ); mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_BOTTOM_LEFT, RECT_CHAMFER_BOTTOM_RIGHT ); } else { mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_BOTTOM_LEFT ); mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_TOP_RIGHT, RECT_CHAMFER_BOTTOM_RIGHT ); } // flip pads layers // PADS items are currently on all copper layers, or // currently, only on Front or Back layers. // So the copper layers count is not taken in account SetLayerSet( FlipLayerMask( m_layerMask ) ); // Flip the basic shapes, in custom pads FlipPrimitives( aFlipLeftRight ); SetDirty(); } void PAD::FlipPrimitives( bool aFlipLeftRight ) { for( std::shared_ptr& primitive : m_editPrimitives ) primitive->Flip( VECTOR2I( 0, 0 ), aFlipLeftRight ); SetDirty(); } VECTOR2I PAD::ShapePos() const { if( m_offset.x == 0 && m_offset.y == 0 ) return m_pos; VECTOR2I loc_offset = m_offset; RotatePoint( loc_offset, m_orient ); VECTOR2I shape_pos = m_pos + loc_offset; return shape_pos; } int PAD::GetLocalClearanceOverrides( wxString* aSource ) const { // A pad can have specific clearance that overrides its NETCLASS clearance value if( GetLocalClearance() ) return GetLocalClearance( aSource ); // A footprint can have a specific clearance value if( GetParent() && GetParent()->GetLocalClearance() ) return GetParent()->GetLocalClearance( aSource ); return 0; } int PAD::GetLocalClearance( wxString* aSource ) const { if( aSource ) *aSource = _( "pad" ); return m_localClearance; } int PAD::GetOwnClearance( PCB_LAYER_ID aLayer, wxString* aSource ) const { DRC_CONSTRAINT c; if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine ) { BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings(); if( GetAttribute() == PAD_ATTRIB::NPTH ) c = bds.m_DRCEngine->EvalRules( HOLE_CLEARANCE_CONSTRAINT, this, nullptr, aLayer ); else c = bds.m_DRCEngine->EvalRules( CLEARANCE_CONSTRAINT, this, nullptr, aLayer ); } if( c.Value().HasMin() ) { if( aSource ) *aSource = c.GetName(); return c.Value().Min(); } return 0; } int PAD::GetSolderMaskExpansion() const { // The pad inherits the margin only to calculate a default shape, // therefore only if it is also a copper layer // Pads defined only on mask layers (and perhaps on other tech layers) use the shape // defined by the pad settings only bool isOnCopperLayer = ( m_layerMask & LSET::AllCuMask() ).any(); if( !isOnCopperLayer ) return 0; int margin = m_localSolderMaskMargin; FOOTPRINT* parentFootprint = GetParent(); if( parentFootprint ) { if( margin == 0 ) { if( parentFootprint->GetLocalSolderMaskMargin() ) margin = parentFootprint->GetLocalSolderMaskMargin(); } if( margin == 0 ) { const BOARD* brd = GetBoard(); if( brd ) margin = brd->GetDesignSettings().m_SolderMaskExpansion; } } // ensure mask have a size always >= 0 if( margin < 0 ) { int minsize = -std::min( m_size.x, m_size.y ) / 2; if( margin < minsize ) margin = minsize; } return margin; } VECTOR2I PAD::GetSolderPasteMargin() const { // The pad inherits the margin only to calculate a default shape, // therefore only if it is also a copper layer. // Pads defined only on mask layers (and perhaps on other tech layers) use the shape // defined by the pad settings only bool isOnCopperLayer = ( m_layerMask & LSET::AllCuMask() ).any(); if( !isOnCopperLayer ) return VECTOR2I( 0, 0 ); int margin = m_localSolderPasteMargin; double mratio = m_localSolderPasteMarginRatio; FOOTPRINT* parentFootprint = GetParent(); if( parentFootprint ) { if( margin == 0 ) margin = parentFootprint->GetLocalSolderPasteMargin(); auto brd = GetBoard(); if( margin == 0 && brd ) margin = brd->GetDesignSettings().m_SolderPasteMargin; if( mratio == 0.0 ) mratio = parentFootprint->GetLocalSolderPasteMarginRatio(); if( mratio == 0.0 && brd ) { mratio = brd->GetDesignSettings().m_SolderPasteMarginRatio; } } VECTOR2I pad_margin; pad_margin.x = margin + KiROUND( m_size.x * mratio ); pad_margin.y = margin + KiROUND( m_size.y * mratio ); // ensure mask have a size always >= 0 if( pad_margin.x < -m_size.x / 2 ) pad_margin.x = -m_size.x / 2; if( pad_margin.y < -m_size.y / 2 ) pad_margin.y = -m_size.y / 2; return pad_margin; } ZONE_CONNECTION PAD::GetLocalZoneConnectionOverride( wxString* aSource ) const { if( m_zoneConnection != ZONE_CONNECTION::INHERITED && aSource ) *aSource = _( "pad" ); return m_zoneConnection; } int PAD::GetLocalSpokeWidthOverride( wxString* aSource ) const { if( m_thermalSpokeWidth > 0 && aSource ) *aSource = _( "pad" ); return m_thermalSpokeWidth; } int PAD::GetLocalThermalGapOverride( wxString* aSource ) const { if( m_thermalGap > 0 && aSource ) *aSource = _( "pad" ); return m_thermalGap; } void PAD::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { EDA_UNITS units = aFrame->GetUserUnits(); wxString msg; FOOTPRINT* parentFootprint = static_cast( m_parent ); if( aFrame->GetName() == PCB_EDIT_FRAME_NAME ) { if( parentFootprint ) aList.emplace_back( _( "Footprint" ), parentFootprint->GetReference() ); } aList.emplace_back( _( "Pad" ), m_number ); if( !GetPinFunction().IsEmpty() ) aList.emplace_back( _( "Pin Name" ), GetPinFunction() ); if( !GetPinType().IsEmpty() ) aList.emplace_back( _( "Pin Type" ), GetPinType() ); if( aFrame->GetName() == PCB_EDIT_FRAME_NAME ) { aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ) ); aList.emplace_back( _( "Resolved Netclass" ), UnescapeString( GetEffectiveNetClass()->GetName() ) ); if( IsLocked() ) aList.emplace_back( _( "Status" ), _( "Locked" ) ); } if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN ) aList.emplace_back( _( "Layer" ), layerMaskDescribe() ); // Show the pad shape, attribute and property wxString props = ShowPadAttr(); if( GetProperty() != PAD_PROP::NONE ) props += ','; switch( GetProperty() ) { case PAD_PROP::NONE: break; case PAD_PROP::BGA: props += _( "BGA" ); break; case PAD_PROP::FIDUCIAL_GLBL: props += _( "Fiducial global" ); break; case PAD_PROP::FIDUCIAL_LOCAL: props += _( "Fiducial local" ); break; case PAD_PROP::TESTPOINT: props += _( "Test point" ); break; case PAD_PROP::HEATSINK: props += _( "Heat sink" ); break; case PAD_PROP::CASTELLATED: props += _( "Castellated" ); break; } aList.emplace_back( ShowPadShape(), props ); if( ( GetShape() == PAD_SHAPE::CIRCLE || GetShape() == PAD_SHAPE::OVAL ) && m_size.x == m_size.y ) { aList.emplace_back( _( "Diameter" ), MessageTextFromValue( units, m_size.x ) ); } else { aList.emplace_back( _( "Width" ), MessageTextFromValue( units, m_size.x ) ); aList.emplace_back( _( "Height" ), MessageTextFromValue( units, m_size.y ) ); } EDA_ANGLE fp_orient = parentFootprint ? parentFootprint->GetOrientation() : ANGLE_0; EDA_ANGLE pad_orient = GetOrientation() - fp_orient; pad_orient.Normalize180(); if( !fp_orient.IsZero() ) msg.Printf( wxT( "%g(+ %g)" ), pad_orient.AsDegrees(), fp_orient.AsDegrees() ); else msg.Printf( wxT( "%g" ), GetOrientation().AsDegrees() ); aList.emplace_back( _( "Rotation" ), msg ); if( GetPadToDieLength() ) { msg = MessageTextFromValue(units, GetPadToDieLength() ); aList.emplace_back( _( "Length in Package" ), msg ); } if( m_drill.x > 0 || m_drill.y > 0 ) { if( GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE ) { aList.emplace_back( _( "Hole" ), wxString::Format( wxT( "%s" ), MessageTextFromValue( units, m_drill.x ) ) ); } else { aList.emplace_back( _( "Hole X / Y" ), wxString::Format( wxT( "%s / %s" ), MessageTextFromValue( units, m_drill.x ), MessageTextFromValue( units, m_drill.y ) ) ); } } wxString source; int clearance = GetOwnClearance( UNDEFINED_LAYER, &source ); if( !source.IsEmpty() ) { aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ), MessageTextFromValue( units, clearance ) ), wxString::Format( _( "(from %s)" ), source ) ); } #if 0 // useful for debug only aList.emplace_back( wxT( "UUID" ), m_Uuid.AsString() ); #endif } bool PAD::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const { VECTOR2I delta = aPosition - GetPosition(); int boundingRadius = GetBoundingRadius() + aAccuracy; if( delta.SquaredEuclideanNorm() > SEG::Square( boundingRadius ) ) return false; return GetEffectivePolygon()->Contains( aPosition, -1, aAccuracy ); } bool PAD::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const { EDA_RECT arect = aRect; arect.Normalize(); arect.Inflate( aAccuracy ); EDA_RECT bbox = GetBoundingBox(); if( aContained ) { return arect.Contains( bbox ); } else { // Fast test: if aRect is outside the polygon bounding box, // rectangles cannot intersect if( !arect.Intersects( bbox ) ) return false; const std::shared_ptr& poly = GetEffectivePolygon(); int count = poly->TotalVertices(); for( int ii = 0; ii < count; ii++ ) { VECTOR2I vertex = poly->CVertex( ii ); VECTOR2I vertexNext = poly->CVertex( ( ii + 1 ) % count ); // Test if the point is within aRect if( arect.Contains( vertex ) ) return true; // Test if this edge intersects aRect if( arect.Intersects( vertex, vertexNext ) ) return true; } return false; } } int PAD::Compare( const PAD* aPadRef, const PAD* aPadCmp ) { int diff; if( ( diff = static_cast( aPadRef->GetShape() ) - static_cast( aPadCmp->GetShape() ) ) != 0 ) return diff; if( ( diff = static_cast( aPadRef->m_attribute ) - static_cast( aPadCmp->m_attribute ) ) != 0 ) return diff; if( ( diff = aPadRef->m_drillShape - aPadCmp->m_drillShape ) != 0 ) return diff; if( ( diff = aPadRef->m_drill.x - aPadCmp->m_drill.x ) != 0 ) return diff; if( ( diff = aPadRef->m_drill.y - aPadCmp->m_drill.y ) != 0 ) return diff; if( ( diff = aPadRef->m_size.x - aPadCmp->m_size.x ) != 0 ) return diff; if( ( diff = aPadRef->m_size.y - aPadCmp->m_size.y ) != 0 ) return diff; if( ( diff = aPadRef->m_offset.x - aPadCmp->m_offset.x ) != 0 ) return diff; if( ( diff = aPadRef->m_offset.y - aPadCmp->m_offset.y ) != 0 ) return diff; if( ( diff = aPadRef->m_deltaSize.x - aPadCmp->m_deltaSize.x ) != 0 ) return diff; if( ( diff = aPadRef->m_deltaSize.y - aPadCmp->m_deltaSize.y ) != 0 ) return diff; if( ( diff = aPadRef->m_roundedCornerScale - aPadCmp->m_roundedCornerScale ) != 0 ) return diff; if( ( diff = aPadRef->m_chamferPositions - aPadCmp->m_chamferPositions ) != 0 ) return diff; if( ( diff = aPadRef->m_chamferScale - aPadCmp->m_chamferScale ) != 0 ) return diff; if( ( diff = static_cast( aPadRef->m_editPrimitives.size() ) - static_cast( aPadCmp->m_editPrimitives.size() ) ) != 0 ) return diff; // @todo: Compare custom pad primitives for pads that have the same number of primitives // here. Currently there is no compare function for PCB_SHAPE objects. // Dick: specctra_export needs this // Lorenzo: gencad also needs it to implement padstacks! #if __cplusplus >= 201103L long long d = aPadRef->m_layerMask.to_ullong() - aPadCmp->m_layerMask.to_ullong(); if( d < 0 ) return -1; else if( d > 0 ) return 1; return 0; #else // these strings are not typically constructed, since we don't get here often. std::string s1 = aPadRef->m_layerMask.to_string(); std::string s2 = aPadCmp->m_layerMask.to_string(); return s1.compare( s2 ); #endif } void PAD::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle ) { RotatePoint( m_pos, aRotCentre, aAngle ); m_orient += aAngle; m_orient.Normalize(); SetLocalCoord(); SetDirty(); } wxString PAD::ShowPadShape() const { switch( GetShape() ) { case PAD_SHAPE::CIRCLE: return _( "Circle" ); case PAD_SHAPE::OVAL: return _( "Oval" ); case PAD_SHAPE::RECT: return _( "Rect" ); case PAD_SHAPE::TRAPEZOID: return _( "Trap" ); case PAD_SHAPE::ROUNDRECT: return _( "Roundrect" ); case PAD_SHAPE::CHAMFERED_RECT: return _( "Chamferedrect" ); case PAD_SHAPE::CUSTOM: return _( "CustomShape" ); default: return wxT( "???" ); } } wxString PAD::ShowPadAttr() const { switch( GetAttribute() ) { case PAD_ATTRIB::PTH: return _( "PTH" ); case PAD_ATTRIB::SMD: return _( "SMD" ); case PAD_ATTRIB::CONN: return _( "Conn" ); case PAD_ATTRIB::NPTH: return _( "NPTH" ); default: return wxT( "???" ); } } wxString PAD::GetSelectMenuText( EDA_UNITS aUnits ) const { if( GetNumber().IsEmpty() ) { if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN ) { return wxString::Format( _( "Pad %s of %s on %s" ), GetNetnameMsg(), GetParent()->GetReference(), layerMaskDescribe() ); } else if( GetAttribute() == PAD_ATTRIB::NPTH && !FlashLayer( F_Cu ) ) { return wxString::Format( _( "Through hole pad %s of %s" ), wxT( "(" ) + _( "NPTH, Mechanical" ) + wxT( ")" ), GetParent()->GetReference() ); } else { return wxString::Format( _( "Through hole pad %s of %s" ), GetNetnameMsg(), GetParent()->GetReference() ); } } else { if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN ) { return wxString::Format( _( "Pad %s %s of %s on %s" ), GetNumber(), GetNetnameMsg(), GetParent()->GetReference(), layerMaskDescribe() ); } else if( GetAttribute() == PAD_ATTRIB::NPTH && !FlashLayer( F_Cu ) ) { return wxString::Format( _( "Through hole pad %s of %s" ), wxT( "(" ) + _( "NPTH, Mechanical" ) + wxT( ")" ), GetParent()->GetReference() ); } else { return wxString::Format( _( "Through hole pad %s %s of %s" ), GetNumber(), GetNetnameMsg(), GetParent()->GetReference() ); } } } BITMAPS PAD::GetMenuImage() const { return BITMAPS::pad; } EDA_ITEM* PAD::Clone() const { return new PAD( *this ); } void PAD::ViewGetLayers( int aLayers[], int& aCount ) const { aCount = 0; // These 2 types of pads contain a hole if( m_attribute == PAD_ATTRIB::PTH ) { aLayers[aCount++] = LAYER_PAD_PLATEDHOLES; aLayers[aCount++] = LAYER_PAD_HOLEWALLS; } if( m_attribute == PAD_ATTRIB::NPTH ) aLayers[aCount++] = LAYER_NON_PLATEDHOLES; if( IsOnLayer( F_Cu ) && IsOnLayer( B_Cu ) ) { // Multi layer pad aLayers[aCount++] = LAYER_PADS_TH; aLayers[aCount++] = LAYER_PAD_NETNAMES; } else if( IsOnLayer( F_Cu ) ) { aLayers[aCount++] = LAYER_PAD_FR; // Is this a PTH pad that has only front copper? If so, we need to also display the // net name on the PTH netname layer so that it isn't blocked by the drill hole. if( m_attribute == PAD_ATTRIB::PTH ) aLayers[aCount++] = LAYER_PAD_NETNAMES; else aLayers[aCount++] = LAYER_PAD_FR_NETNAMES; } else if( IsOnLayer( B_Cu ) ) { aLayers[aCount++] = LAYER_PAD_BK; // Is this a PTH pad that has only back copper? If so, we need to also display the // net name on the PTH netname layer so that it isn't blocked by the drill hole. if( m_attribute == PAD_ATTRIB::PTH ) aLayers[aCount++] = LAYER_PAD_NETNAMES; else aLayers[aCount++] = LAYER_PAD_BK_NETNAMES; } else { // Internal layers only. (Not yet supported in GUI, but is being used by Python // footprint generators and will be needed anyway once pad stacks are supported.) for ( int internal = In1_Cu; internal < In30_Cu; ++internal ) { if( IsOnLayer( (PCB_LAYER_ID) internal ) ) aLayers[aCount++] = internal; } } // Check non-copper layers. This list should include all the layers that the // footprint editor allows a pad to be placed on. static const PCB_LAYER_ID layers_mech[] = { F_Mask, B_Mask, F_Paste, B_Paste, F_Adhes, B_Adhes, F_SilkS, B_SilkS, Dwgs_User, Eco1_User, Eco2_User }; for( PCB_LAYER_ID each_layer : layers_mech ) { if( IsOnLayer( each_layer ) ) aLayers[aCount++] = each_layer; } #ifdef DEBUG if( aCount == 0 ) // Should not occur { wxString msg; msg.Printf( wxT( "footprint %s, pad %s: could not find valid layer for pad" ), GetParent() ? GetParent()->GetReference() : wxT( "" ), GetNumber().IsEmpty() ? wxT( "(unnumbered)" ) : GetNumber() ); wxLogDebug( msg ); } #endif } double PAD::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const { constexpr double HIDE = std::numeric_limits::max(); PCB_PAINTER* painter = static_cast( aView->GetPainter() ); PCB_RENDER_SETTINGS* renderSettings = painter->GetSettings(); const BOARD* board = GetBoard(); LSET visible = LSET::AllLayersMask(); // Meta control for hiding all pads if( !aView->IsLayerVisible( LAYER_PADS ) ) return HIDE; // Handle board visibility if( board ) visible &= board->GetEnabledLayers(); // Handle view visibility for( int layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { if( !aView->IsLayerVisible( layer ) ) visible.set( layer, false ); } // Handle Render tab switches if( ( GetAttribute() == PAD_ATTRIB::PTH || GetAttribute() == PAD_ATTRIB::NPTH ) && !aView->IsLayerVisible( LAYER_PADS_TH ) ) { return HIDE; } if( !IsFlipped() && !aView->IsLayerVisible( LAYER_MOD_FR ) ) return HIDE; if( IsFlipped() && !aView->IsLayerVisible( LAYER_MOD_BK ) ) return HIDE; if( IsFrontLayer( (PCB_LAYER_ID) aLayer ) && !aView->IsLayerVisible( LAYER_PAD_FR ) ) return HIDE; if( IsBackLayer( (PCB_LAYER_ID) aLayer ) && !aView->IsLayerVisible( LAYER_PAD_BK ) ) return HIDE; if( aLayer == LAYER_PADS_TH ) { if( !FlashLayer( visible ) ) return HIDE; } else if( IsHoleLayer( aLayer ) ) { if( !( visible & LSET::PhysicalLayersMask() ).any() ) return HIDE; } else if( IsNetnameLayer( aLayer ) ) { if( renderSettings->GetHighContrast() ) { // Hide netnames unless pad is flashed to a high-contrast layer if( !FlashLayer( renderSettings->GetPrimaryHighContrastLayer() ) ) return HIDE; } else { // Hide netnames unless pad is flashed to a visible layer if( !FlashLayer( visible ) ) return HIDE; } // Netnames will be shown only if zoom is appropriate int divisor = std::min( GetBoundingBox().GetWidth(), GetBoundingBox().GetHeight() ); // Pad sizes can be zero briefly when someone is typing a number like "0.5" // in the pad properties dialog if( divisor == 0 ) return HIDE; return ( double ) Millimeter2iu( 5 ) / divisor; } // Passed all tests; show. return 0.0; } const BOX2I PAD::ViewBBox() const { // Bounding box includes soldermask too. Remember mask and/or paste // margins can be < 0 int solderMaskMargin = std::max( GetSolderMaskExpansion(), 0 ); VECTOR2I solderPasteMargin = VECTOR2D( GetSolderPasteMargin() ); EDA_RECT bbox = GetBoundingBox(); // get the biggest possible clearance int clearance = 0; for( PCB_LAYER_ID layer : GetLayerSet().Seq() ) clearance = std::max( clearance, GetOwnClearance( layer ) ); // Look for the biggest possible bounding box int xMargin = std::max( solderMaskMargin, solderPasteMargin.x ) + clearance; int yMargin = std::max( solderMaskMargin, solderPasteMargin.y ) + clearance; return BOX2I( VECTOR2I( bbox.GetOrigin() ) - VECTOR2I( xMargin, yMargin ), VECTOR2I( bbox.GetSize() ) + VECTOR2I( 2 * xMargin, 2 * yMargin ) ); } FOOTPRINT* PAD::GetParent() const { return dyn_cast( m_parent ); } void PAD::ImportSettingsFrom( const PAD& aMasterPad ) { SetShape( aMasterPad.GetShape() ); SetLayerSet( aMasterPad.GetLayerSet() ); SetAttribute( aMasterPad.GetAttribute() ); SetProperty( aMasterPad.GetProperty() ); // I am not sure the m_LengthPadToDie should be imported, because this is a parameter // really specific to a given pad (JPC). #if 0 SetPadToDieLength( aMasterPad.GetPadToDieLength() ); #endif // The pad orientation, for historical reasons is the pad rotation + parent rotation. EDA_ANGLE pad_rot = aMasterPad.GetOrientation(); if( aMasterPad.GetParent() ) pad_rot -= aMasterPad.GetParent()->GetOrientation(); if( GetParent() ) pad_rot += GetParent()->GetOrientation(); SetOrientation( pad_rot ); SetSize( aMasterPad.GetSize() ); SetDelta( VECTOR2I( 0, 0 ) ); SetOffset( aMasterPad.GetOffset() ); SetDrillSize( aMasterPad.GetDrillSize() ); SetDrillShape( aMasterPad.GetDrillShape() ); SetRoundRectRadiusRatio( aMasterPad.GetRoundRectRadiusRatio() ); SetChamferRectRatio( aMasterPad.GetChamferRectRatio() ); SetChamferPositions( aMasterPad.GetChamferPositions() ); switch( aMasterPad.GetShape() ) { case PAD_SHAPE::TRAPEZOID: SetDelta( aMasterPad.GetDelta() ); break; case PAD_SHAPE::CIRCLE: // ensure size.y == size.x SetSize( VECTOR2I( GetSize().x, GetSize().x ) ); break; default: ; } switch( aMasterPad.GetAttribute() ) { case PAD_ATTRIB::SMD: case PAD_ATTRIB::CONN: // These pads do not have a hole (they are expected to be on one external copper layer) SetDrillSize( VECTOR2I( 0, 0 ) ); break; default: ; } // copy also local settings: SetLocalClearance( aMasterPad.GetLocalClearance() ); SetLocalSolderMaskMargin( aMasterPad.GetLocalSolderMaskMargin() ); SetLocalSolderPasteMargin( aMasterPad.GetLocalSolderPasteMargin() ); SetLocalSolderPasteMarginRatio( aMasterPad.GetLocalSolderPasteMarginRatio() ); SetZoneConnection( aMasterPad.GetZoneConnection() ); SetThermalSpokeWidth( aMasterPad.GetThermalSpokeWidth() ); SetThermalSpokeAngle( aMasterPad.GetThermalSpokeAngle() ); SetThermalGap( aMasterPad.GetThermalGap() ); SetCustomShapeInZoneOpt( aMasterPad.GetCustomShapeInZoneOpt() ); // Add or remove custom pad shapes: ReplacePrimitives( aMasterPad.GetPrimitives() ); SetAnchorPadShape( aMasterPad.GetAnchorPadShape() ); SetDirty(); } void PAD::SwapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_PAD_T ); std::swap( *this, *static_cast( aImage ) ); } bool PAD::TransformHoleWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, int aInflateValue, int aError, ERROR_LOC aErrorLoc ) const { VECTOR2I drillsize = GetDrillSize(); if( !drillsize.x || !drillsize.y ) return false; std::shared_ptr slot = GetEffectiveHoleShape(); TransformOvalToPolygon( aCornerBuffer, slot->GetSeg().A, slot->GetSeg().B, slot->GetWidth() + aInflateValue * 2, aError, aErrorLoc ); return true; } void PAD::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, PCB_LAYER_ID aLayer, int aClearanceValue, int aError, ERROR_LOC aErrorLoc, bool ignoreLineWidth ) const { wxASSERT_MSG( !ignoreLineWidth, wxT( "IgnoreLineWidth has no meaning for pads." ) ); // minimal segment count to approximate a circle to create the polygonal pad shape // This minimal value is mainly for very small pads, like SM0402. // Most of time pads are using the segment count given by aError value. const int pad_min_seg_per_circle_count = 16; int dx = m_size.x / 2; int dy = m_size.y / 2; VECTOR2I padShapePos = ShapePos(); // Note: for pad having a shape offset, // the pad position is NOT the shape position switch( GetShape() ) { case PAD_SHAPE::CIRCLE: case PAD_SHAPE::OVAL: // Note: dx == dy is not guaranteed for circle pads in legacy boards if( dx == dy || ( GetShape() == PAD_SHAPE::CIRCLE ) ) { TransformCircleToPolygon( aCornerBuffer, padShapePos, dx + aClearanceValue, aError, aErrorLoc, pad_min_seg_per_circle_count ); } else { int half_width = std::min( dx, dy ); VECTOR2I delta( dx - half_width, dy - half_width ); RotatePoint( delta, m_orient ); TransformOvalToPolygon( aCornerBuffer, padShapePos - delta, padShapePos + delta, ( half_width + aClearanceValue ) * 2, aError, aErrorLoc, pad_min_seg_per_circle_count ); } break; case PAD_SHAPE::TRAPEZOID: case PAD_SHAPE::RECT: { int ddx = GetShape() == PAD_SHAPE::TRAPEZOID ? m_deltaSize.x / 2 : 0; int ddy = GetShape() == PAD_SHAPE::TRAPEZOID ? m_deltaSize.y / 2 : 0; SHAPE_POLY_SET outline; TransformTrapezoidToPolygon( outline, padShapePos, m_size, m_orient, ddx, ddy, aClearanceValue, aError, aErrorLoc ); aCornerBuffer.Append( outline ); break; } case PAD_SHAPE::CHAMFERED_RECT: case PAD_SHAPE::ROUNDRECT: { bool doChamfer = GetShape() == PAD_SHAPE::CHAMFERED_RECT; SHAPE_POLY_SET outline; TransformRoundChamferedRectToPolygon( outline, padShapePos, m_size, m_orient, GetRoundRectCornerRadius(), doChamfer ? GetChamferRectRatio() : 0, doChamfer ? GetChamferPositions() : 0, aClearanceValue, aError, aErrorLoc ); aCornerBuffer.Append( outline ); break; } case PAD_SHAPE::CUSTOM: { SHAPE_POLY_SET outline; MergePrimitivesAsPolygon( &outline, aErrorLoc ); outline.Rotate( m_orient ); outline.Move( VECTOR2I( m_pos ) ); if( aClearanceValue ) { int numSegs = std::max( GetArcToSegmentCount( aClearanceValue, aError, FULL_CIRCLE ), pad_min_seg_per_circle_count ); int clearance = aClearanceValue; if( aErrorLoc == ERROR_OUTSIDE ) { int actual_error = CircleToEndSegmentDeltaRadius( clearance, numSegs ); clearance += GetCircleToPolyCorrection( actual_error ); } outline.Inflate( clearance, numSegs ); outline.Simplify( SHAPE_POLY_SET::PM_FAST ); outline.Fracture( SHAPE_POLY_SET::PM_FAST ); } aCornerBuffer.Append( outline ); break; } default: wxFAIL_MSG( wxT( "PAD::TransformShapeWithClearanceToPolygon no implementation for " ) + PAD_SHAPE_T_asString( GetShape() ) ); break; } } static struct PAD_DESC { PAD_DESC() { ENUM_MAP::Instance() .Map( PAD_ATTRIB::PTH, _HKI( "Through-hole" ) ) .Map( PAD_ATTRIB::SMD, _HKI( "SMD" ) ) .Map( PAD_ATTRIB::CONN, _HKI( "Edge connector" ) ) .Map( PAD_ATTRIB::NPTH, _HKI( "NPTH, mechanical" ) ); ENUM_MAP::Instance() .Map( PAD_SHAPE::CIRCLE, _HKI( "Circle" ) ) .Map( PAD_SHAPE::RECT, _HKI( "Rectangle" ) ) .Map( PAD_SHAPE::OVAL, _HKI( "Oval" ) ) .Map( PAD_SHAPE::TRAPEZOID, _HKI( "Trapezoid" ) ) .Map( PAD_SHAPE::ROUNDRECT, _HKI( "Rounded rectangle" ) ) .Map( PAD_SHAPE::CHAMFERED_RECT, _HKI( "Chamfered rectangle" ) ) .Map( PAD_SHAPE::CUSTOM, _HKI( "Custom" ) ); ENUM_MAP::Instance() .Map( PAD_PROP::NONE, _HKI( "None" ) ) .Map( PAD_PROP::BGA, _HKI( "BGA pad" ) ) .Map( PAD_PROP::FIDUCIAL_GLBL, _HKI( "Fiducial, global to board" ) ) .Map( PAD_PROP::FIDUCIAL_LOCAL, _HKI( "Fiducial, local to footprint" ) ) .Map( PAD_PROP::TESTPOINT, _HKI( "Test point pad" ) ) .Map( PAD_PROP::HEATSINK, _HKI( "Heatsink pad" ) ) .Map( PAD_PROP::CASTELLATED, _HKI( "Castellated pad" ) ); PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance(); REGISTER_TYPE( PAD ); propMgr.InheritsAfter( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ) ); auto padType = new PROPERTY_ENUM( _HKI( "Pad Type" ), &PAD::SetAttribute, &PAD::GetAttribute ); propMgr.AddProperty( padType ); auto shape = new PROPERTY_ENUM( _HKI( "Shape" ), &PAD::SetShape, &PAD::GetShape ); propMgr.AddProperty( shape ); propMgr.AddProperty( new PROPERTY( _HKI( "Pad Number" ), &PAD::SetNumber, &PAD::GetNumber ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Pin Name" ), &PAD::SetPinFunction, &PAD::GetPinFunction ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Pin Type" ), &PAD::SetPinType, &PAD::GetPinType ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Orientation" ), &PAD::SetOrientationDegrees, &PAD::GetOrientationDegrees, PROPERTY_DISPLAY::DEGREE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Size X" ), &PAD::SetSizeX, &PAD::GetSizeX, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Size Y" ), &PAD::SetSizeY, &PAD::GetSizeY, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Hole Size X" ), &PAD::SetDrillSizeX, &PAD::GetDrillSizeX, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Hole Size Y" ), &PAD::SetDrillSizeY, &PAD::GetDrillSizeY, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Pad To Die Length" ), &PAD::SetPadToDieLength, &PAD::GetPadToDieLength, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Soldermask Margin Override" ), &PAD::SetLocalSolderMaskMargin, &PAD::GetLocalSolderMaskMargin, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Solderpaste Margin Override" ), &PAD::SetLocalSolderPasteMargin, &PAD::GetLocalSolderPasteMargin, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Solderpaste Margin Ratio Override" ), &PAD::SetLocalSolderPasteMarginRatio, &PAD::GetLocalSolderPasteMarginRatio ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Thermal Relief Spoke Width" ), &PAD::SetThermalSpokeWidth, &PAD::GetThermalSpokeWidth, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Thermal Relief Spoke Angle" ), &PAD::SetThermalSpokeAngleDegrees, &PAD::GetThermalSpokeAngleDegrees, PROPERTY_DISPLAY::DEGREE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Thermal Relief Gap" ), &PAD::SetThermalGap, &PAD::GetThermalGap, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Fabrication Property" ), &PAD::SetProperty, &PAD::GetProperty ) ); auto roundRadiusRatio = new PROPERTY( _HKI( "Round Radius Ratio" ), &PAD::SetRoundRectRadiusRatio, &PAD::GetRoundRectRadiusRatio ); roundRadiusRatio->SetAvailableFunc( [=]( INSPECTABLE* aItem ) -> bool { return aItem->Get( shape ) == static_cast( PAD_SHAPE::ROUNDRECT ); } ); propMgr.AddProperty( roundRadiusRatio ); propMgr.AddProperty( new PROPERTY( _HKI( "Clearance Override" ), &PAD::SetLocalClearance, &PAD::GetLocalClearance, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Parent" ), NO_SETTER( PAD, wxString ), &PAD::GetParentAsString ) ); // TODO delta, drill shape offset, layer set, zone connection } } _PAD_DESC; ENUM_TO_WXANY( PAD_ATTRIB ); ENUM_TO_WXANY( PAD_SHAPE ); ENUM_TO_WXANY( PAD_PROP );