/* * This program source code file is part of KiCad, a free EDA CAD application. *lib_tree_model * Copyright (C) 2017 Chris Pavlina * Copyright (C) 2014 Henner Zeller * Copyright (C) 2014-2023 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include #include #include // Each node gets this lowest score initially, without any matches applied. Matches will then // increase this score. This way, an empty search string will result in all components being // displayed as they have the minimum score. However, in that case, we avoid expanding all the // nodes asd the result is very unspecific. static const unsigned kLowestDefaultScore = 1; void LIB_TREE_NODE::ResetScore() { for( std::unique_ptr& child: m_Children ) child->ResetScore(); m_Score = kLowestDefaultScore; } void LIB_TREE_NODE::AssignIntrinsicRanks( bool presorted ) { std::vector sort_buf; if( presorted ) { int max = m_Children.size() - 1; for( int i = 0; i <= max; ++i ) m_Children[i]->m_IntrinsicRank = max - i; } else { for( std::unique_ptr& child: m_Children ) sort_buf.push_back( child.get() ); std::sort( sort_buf.begin(), sort_buf.end(), []( LIB_TREE_NODE* a, LIB_TREE_NODE* b ) -> bool { return StrNumCmp( a->m_Name, b->m_Name, true ) > 0; } ); for( int i = 0; i < (int) sort_buf.size(); ++i ) sort_buf[i]->m_IntrinsicRank = i; } } void LIB_TREE_NODE::SortNodes() { std::sort( m_Children.begin(), m_Children.end(), []( std::unique_ptr& a, std::unique_ptr& b ) { return Compare( *a, *b ); } ); for( std::unique_ptr& node: m_Children ) node->SortNodes(); } bool LIB_TREE_NODE::Compare( LIB_TREE_NODE const& aNode1, LIB_TREE_NODE const& aNode2 ) { if( aNode1.m_Type != aNode2.m_Type ) return aNode1.m_Type < aNode2.m_Type; // Recently used sorts at top if( aNode1.m_Name.StartsWith( wxT( "-- " ) ) ) { if( aNode2.m_Name.StartsWith( wxT( "-- " ) ) ) { return aNode1.m_IntrinsicRank > aNode2.m_IntrinsicRank; } else { return true; } } else if( aNode2.m_Name.StartsWith( wxT( "-- " ) ) ) { return false; } // Pinned nodes go next if( aNode1.m_Pinned && !aNode2.m_Pinned ) return true; else if( aNode2.m_Pinned && !aNode1.m_Pinned ) return false; if( aNode1.m_IntrinsicRank != aNode2.m_IntrinsicRank ) return aNode1.m_IntrinsicRank > aNode2.m_IntrinsicRank; return reinterpret_cast( &aNode1 ) < reinterpret_cast( &aNode2 ); } LIB_TREE_NODE::LIB_TREE_NODE() : m_Parent( nullptr ), m_Type( INVALID ), m_IntrinsicRank( 0 ), m_Score( kLowestDefaultScore ), m_Pinned( false ), m_Normalized( false ), m_Unit( 0 ), m_IsRoot( false ) {} LIB_TREE_NODE_UNIT::LIB_TREE_NODE_UNIT( LIB_TREE_NODE* aParent, LIB_TREE_ITEM* aItem, int aUnit ) { static void* locale = nullptr; static wxString namePrefix; // Fetching translations can take a surprising amount of time when loading libraries, // so only do it when necessary. if( Pgm().GetLocale() != locale ) { namePrefix = _( "Unit" ); locale = Pgm().GetLocale(); } m_Parent = aParent; m_Type = UNIT; m_Unit = aUnit; m_LibId = aParent->m_LibId; m_Name = namePrefix + " " + aItem->GetUnitReference( aUnit ); if( aItem->HasUnitDisplayName( aUnit ) ) { m_Desc = aItem->GetUnitDisplayName( aUnit ); } else { m_Desc = wxEmptyString; } m_MatchName = wxEmptyString; m_IntrinsicRank = -aUnit; } LIB_TREE_NODE_LIB_ID::LIB_TREE_NODE_LIB_ID( LIB_TREE_NODE* aParent, LIB_TREE_ITEM* aItem ) { m_Type = LIBID; m_Parent = aParent; m_LibId.SetLibNickname( aItem->GetLibNickname() ); m_LibId.SetLibItemName( aItem->GetName() ); m_Name = aItem->GetName(); m_Desc = aItem->GetDescription(); m_Footprint = aItem->GetFootprint(); aItem->GetChooserFields( m_Fields ); m_MatchName = aItem->GetName(); m_SearchText = aItem->GetSearchText(); m_Normalized = false; m_IsRoot = aItem->IsRoot(); if( aItem->GetUnitCount() > 1 ) { for( int u = 1; u <= aItem->GetUnitCount(); ++u ) AddUnit( aItem, u ); } } LIB_TREE_NODE_UNIT& LIB_TREE_NODE_LIB_ID::AddUnit( LIB_TREE_ITEM* aItem, int aUnit ) { LIB_TREE_NODE_UNIT* unit = new LIB_TREE_NODE_UNIT( this, aItem, aUnit ); m_Children.push_back( std::unique_ptr( unit ) ); return *unit; } void LIB_TREE_NODE_LIB_ID::Update( LIB_TREE_ITEM* aItem ) { m_LibId.SetLibNickname( aItem->GetLibId().GetLibNickname() ); m_LibId.SetLibItemName( aItem->GetName() ); m_Name = aItem->GetName(); m_Desc = aItem->GetDescription(); m_MatchName = aItem->GetName(); aItem->GetChooserFields( m_Fields ); m_SearchText = aItem->GetSearchText(); m_Normalized = false; m_IsRoot = aItem->IsRoot(); m_Children.clear(); for( int u = 1; u <= aItem->GetUnitCount(); ++u ) AddUnit( aItem, u ); } void LIB_TREE_NODE_LIB_ID::UpdateScore( EDA_COMBINED_MATCHER& aMatcher, const wxString& aLib ) { if( m_Score <= 0 ) return; // Leaf nodes without scores are out of the game. if( !m_Normalized ) { m_MatchName = UnescapeString( m_MatchName ).Lower(); m_SearchText = m_SearchText.Lower(); m_Normalized = true; } if( !aLib.IsEmpty() && m_Parent->m_MatchName != aLib ) { m_Score = 0; return; } // Keyword and description matches only count if they're at least two chars long. This // avoids spurious, low quality matches. (Most abbreviations are at least 3 chars.) if( aMatcher.Find( m_MatchName ) ) m_Score++; else if( aMatcher.GetPattern().length() >= 2 && aMatcher.Find( m_SearchText ) ) m_Score++; else m_Score = 0; } LIB_TREE_NODE_LIB::LIB_TREE_NODE_LIB( LIB_TREE_NODE* aParent, wxString const& aName, wxString const& aDesc ) { m_Type = LIB; m_Name = aName; m_MatchName = aName.Lower(); m_Desc = aDesc; m_Parent = aParent; m_LibId.SetLibNickname( aName ); } LIB_TREE_NODE_LIB_ID& LIB_TREE_NODE_LIB::AddItem( LIB_TREE_ITEM* aItem ) { LIB_TREE_NODE_LIB_ID* item = new LIB_TREE_NODE_LIB_ID( this, aItem ); m_Children.push_back( std::unique_ptr( item ) ); return *item; } void LIB_TREE_NODE_LIB::UpdateScore( EDA_COMBINED_MATCHER& aMatcher, const wxString& aLib ) { m_Score = 0; // We need to score leaf nodes, which are usually (but not always) children. if( m_Children.size() ) { for( std::unique_ptr& child: m_Children ) { child->UpdateScore( aMatcher, aLib ); m_Score = std::max( m_Score, child->m_Score ); } } else { // No children; we are a leaf. if( !aLib.IsEmpty() && m_MatchName == aLib ) m_Score++; else if( aMatcher.Find( m_MatchName ) ) m_Score++; } } LIB_TREE_NODE_ROOT::LIB_TREE_NODE_ROOT() { m_Type = ROOT; } LIB_TREE_NODE_LIB& LIB_TREE_NODE_ROOT::AddLib( wxString const& aName, wxString const& aDesc ) { LIB_TREE_NODE_LIB* lib = new LIB_TREE_NODE_LIB( this, aName, aDesc ); m_Children.push_back( std::unique_ptr( lib ) ); return *lib; } void LIB_TREE_NODE_ROOT::UpdateScore( EDA_COMBINED_MATCHER& aMatcher, const wxString& aLib ) { for( std::unique_ptr& child: m_Children ) child->UpdateScore( aMatcher, aLib ); }