/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2014 CERN * Copyright (C) 2016 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include "pns_utils.h" #include "pns_line.h" #include "pns_via.h" #include "pns_router.h" #include "pns_debug_decorator.h" #include #include #include #include namespace PNS { const SHAPE_LINE_CHAIN OctagonalHull( const VECTOR2I& aP0, const VECTOR2I& aSize, int aClearance, int aChamfer ) { SHAPE_LINE_CHAIN s; s.SetClosed( true ); s.Append( aP0.x - aClearance, aP0.y - aClearance + aChamfer ); if( aChamfer ) s.Append( aP0.x - aClearance + aChamfer, aP0.y - aClearance ); s.Append( aP0.x + aSize.x + aClearance - aChamfer, aP0.y - aClearance ); if( aChamfer ) s.Append( aP0.x + aSize.x + aClearance, aP0.y - aClearance + aChamfer ); s.Append( aP0.x + aSize.x + aClearance, aP0.y + aSize.y + aClearance - aChamfer ); if( aChamfer ) s.Append( aP0.x + aSize.x + aClearance - aChamfer, aP0.y + aSize.y + aClearance ); s.Append( aP0.x - aClearance + aChamfer, aP0.y + aSize.y + aClearance ); if( aChamfer ) s.Append( aP0.x - aClearance, aP0.y + aSize.y + aClearance - aChamfer ); return s; } const SHAPE_LINE_CHAIN ArcHull( const SHAPE_ARC& aArc, int aClearance, int aWalkaroundThickness ) { int cl = aClearance + ( aWalkaroundThickness + 1 ) / 2; // If we can't route through the arc, we might as well treat it as a circle if( aArc.GetCentralAngle().AsDegrees() > 180.0 && aArc.GetChord().Length() < cl ) { int r = aArc.GetRadius(); return OctagonalHull( aArc.GetCenter() - VECTOR2I( r, r ), VECTOR2I( 2 * r, 2 * r ), cl, 2.0 * ( 1.0 - M_SQRT1_2 ) * ( r + cl ) ); } int d = aArc.GetWidth() / 2 + cl + SHAPE_ARC::DefaultAccuracyForPCB(); int x = (int) ( 2.0 / ( 1.0 + M_SQRT2 ) * d ) / 2; auto line = aArc.ConvertToPolyline( ARC_LOW_DEF ); SHAPE_LINE_CHAIN s; s.SetClosed( true ); std::vector reverse_line; auto seg = line.Segment( 0 ); VECTOR2I dir = seg.B - seg.A; VECTOR2I p0 = -dir.Perpendicular().Resize( d ); VECTOR2I ds = -dir.Perpendicular().Resize( x ); VECTOR2I pd = dir.Resize( x ); VECTOR2I dp = dir.Resize( d ); // Append the first curve s.Append( seg.A + p0 - pd ); s.Append( seg.A - dp + ds ); s.Append( seg.A - dp - ds ); s.Append( seg.A - p0 - pd ); for( int i = 1; i < line.SegmentCount(); i++ ) { // calculate a vertex normal (average of segment normals) auto pp = ( line.CSegment( i - 1 ).B - line.CSegment( i - 1 ).A ).Perpendicular().Resize( d ); auto pp2 = ( line.CSegment( i ).B - line.CSegment( i ).A ).Perpendicular().Resize( d ); auto sa_out = line.CSegment( i - 1 ), sa_in = line.CSegment( i - 1 ); auto sb_out = line.CSegment( i ), sb_in = line.CSegment( i ); sa_out.A += pp; sa_out.B += pp; sb_out.A += pp2; sb_out.B += pp2; sa_in.A -= pp; sa_in.B -= pp; sb_in.A -= pp2; sb_in.B -= pp2; auto ip_out = sa_out.IntersectLines( sb_out ); auto ip_in = sa_in.IntersectLines( sb_in ); seg = line.CSegment( i ); auto lead = ( pp + pp2 ) / 2; s.Append( *ip_out ); reverse_line.push_back( *ip_in ); } seg = line.CSegment( -1 ); dir = seg.B - seg.A; p0 = -dir.Perpendicular().Resize( d ); ds = -dir.Perpendicular().Resize( x ); pd = dir.Resize( x ); dp = dir.Resize( d ); s.Append( seg.B - p0 + pd ); s.Append( seg.B + dp - ds ); s.Append( seg.B + dp + ds ); s.Append( seg.B + p0 + pd ); for( int i = reverse_line.size() - 1; i >= 0; i-- ) s.Append( reverse_line[i] ); // make sure the hull outline is always clockwise if( s.CSegment( 0 ).Side( line.Segment( 0 ).A ) < 0 ) return s.Reverse(); else return s; } static bool IsSegment45Degree( const SEG& aS ) { VECTOR2I dir( aS.B - aS.A ); if( std::abs( dir.x ) <= 1 ) return true; if( std::abs( dir.y ) <= 1 ) return true; int delta = std::abs(dir.x) - std::abs(dir.y); if( delta >= -1 && delta <= 1) return true; return false; } template int sgn(T val) { return (T(0) < val) - (val < T(0)); } const SHAPE_LINE_CHAIN SegmentHull ( const SHAPE_SEGMENT& aSeg, int aClearance, int aWalkaroundThickness ) { const int kinkThreshold = aClearance / 10; int cl = aClearance + aWalkaroundThickness / 2; double d = (double)aSeg.GetWidth() / 2.0 + cl; double x = 2.0 / ( 1.0 + M_SQRT2 ) * d; int dr = KiROUND( d ); int xr = KiROUND( x ); int xr2 = KiROUND( x / 2.0 ); const VECTOR2I a = aSeg.GetSeg().A; VECTOR2I b = aSeg.GetSeg().B; int len = aSeg.GetSeg().Length(); int w = b.x - a.x; int h = b.y - a.y; /* auto dbg = ROUTER::GetInstance()->GetInterface()->GetDebugDecorator(); if( len < kinkThreshold ) { PNS_DBG( dbg, AddShape, &aSeg, CYAN, 10000, wxString::Format( "kinky-seg 45 %d l %d dx %d dy %d", !!IsSegment45Degree( aSeg.GetSeg() ), len, w, h ) ); } */ if( a != b ) { if ( !IsSegment45Degree( aSeg.GetSeg() ) ) { if ( len <= kinkThreshold && len > 0 ) { int ll = std::max( std::abs( w ), std::abs( h ) ); b = a + VECTOR2I( sgn( w ) * ll, sgn( h ) * ll ); } } else { if( len <= kinkThreshold ) { int delta45 = std::abs( std::abs(w) - std::abs(h) ); if( std::abs(w) <= 1 ) // almost vertical { w = 0; cl ++; } else if ( std::abs(h) <= 1 ) // almost horizontal { h = 0; cl ++; } else if ( delta45 <= 2 ) // almost 45 degree { int newW = sgn( w ) * std::max( std::abs(w), std::abs( h ) ); int newH = sgn( h ) * std::max( std::abs(w), std::abs( h ) ); w = newW; h = newH; cl += 2; //PNS_DBG( dbg, AddShape, &aSeg, CYAN, 10000, wxString::Format( "almostkinky45 45 %d l %d dx %d dy %d", !!IsSegment45Degree( aSeg.GetSeg() ), len, w, h ) ); } b.x = a.x + w; b.y = a.y + h; } } } if( a == b ) { int xx2 = KiROUND( 2.0 * ( 1.0 - M_SQRT1_2 ) * d ); auto ohull = OctagonalHull( a - VECTOR2I( aSeg.GetWidth() / 2, aSeg.GetWidth() / 2 ), VECTOR2I( aSeg.GetWidth(), aSeg.GetWidth() ), cl, xx2 ); return ohull; } VECTOR2I dir = b - a; VECTOR2I p0 = dir.Perpendicular().Resize( dr ); VECTOR2I ds = dir.Perpendicular().Resize( xr2 ); VECTOR2I pd = dir.Resize( xr2 ); VECTOR2I dp = dir.Resize( dr ); SHAPE_LINE_CHAIN s; s.SetClosed( true ); s.Append( b + p0 + pd ); s.Append( b + dp + ds ); s.Append( b + dp - ds ); s.Append( b - p0 + pd ); s.Append( a - p0 - pd ); s.Append( a - dp - ds ); s.Append( a - dp + ds ); s.Append( a + p0 - pd ); // make sure the hull outline is always clockwise if( s.CSegment( 0 ).Side( a ) < 0 ) return s.Reverse(); else return s; } static void MoveDiagonal( SEG& aDiagonal, const SHAPE_LINE_CHAIN& aVertices, int aClearance ) { int dist; aVertices.NearestPoint( aDiagonal, dist ); VECTOR2I moveBy = ( aDiagonal.A - aDiagonal.B ).Perpendicular().Resize( dist - aClearance ); aDiagonal.A += moveBy; aDiagonal.B += moveBy; } const SHAPE_LINE_CHAIN ConvexHull( const SHAPE_SIMPLE& aConvex, int aClearance ) { // this defines the horizontal and vertical lines in the hull octagon BOX2I box = aConvex.BBox( aClearance ); box.Normalize(); SEG topline = SEG( VECTOR2I( box.GetX(), box.GetY() + box.GetHeight() ), VECTOR2I( box.GetX() + box.GetWidth(), box.GetY() + box.GetHeight() ) ); SEG rightline = SEG( VECTOR2I( box.GetX() + box.GetWidth(), box.GetY() + box.GetHeight() ), VECTOR2I( box.GetX() + box.GetWidth(), box.GetY() ) ); SEG bottomline = SEG( VECTOR2I( box.GetX() + box.GetWidth(), box.GetY() ), box.GetOrigin() ); SEG leftline = SEG( box.GetOrigin(), VECTOR2I( box.GetX(), box.GetY() + box.GetHeight() ) ); const SHAPE_LINE_CHAIN& vertices = aConvex.Vertices(); // top right diagonal VECTOR2I corner = box.GetOrigin() + box.GetSize(); SEG toprightline = SEG( corner, corner + VECTOR2I( box.GetHeight(), -box.GetHeight() ) ); MoveDiagonal( toprightline, vertices, aClearance ); // bottom right diagonal corner = box.GetOrigin() + VECTOR2I( box.GetWidth(), 0 ); SEG bottomrightline = SEG( corner + VECTOR2I( box.GetHeight(), box.GetHeight() ), corner ); MoveDiagonal( bottomrightline, vertices, aClearance ); // bottom left diagonal corner = box.GetOrigin(); SEG bottomleftline = SEG( corner, corner + VECTOR2I( -box.GetHeight(), box.GetHeight() ) ); MoveDiagonal( bottomleftline, vertices, aClearance ); // top left diagonal corner = box.GetOrigin() + VECTOR2I( 0, box.GetHeight() ); SEG topleftline = SEG( corner + VECTOR2I( -box.GetHeight(), -box.GetHeight() ), corner ); MoveDiagonal( topleftline, vertices, aClearance ); SHAPE_LINE_CHAIN octagon; octagon.SetClosed( true ); octagon.Append( *leftline.IntersectLines( bottomleftline ) ); octagon.Append( *bottomline.IntersectLines( bottomleftline ) ); octagon.Append( *bottomline.IntersectLines( bottomrightline ) ); octagon.Append( *rightline.IntersectLines( bottomrightline ) ); octagon.Append( *rightline.IntersectLines( toprightline ) ); octagon.Append( *topline.IntersectLines( toprightline ) ); octagon.Append( *topline.IntersectLines( topleftline ) ); octagon.Append( *leftline.IntersectLines( topleftline ) ); return octagon; } SHAPE_RECT ApproximateSegmentAsRect( const SHAPE_SEGMENT& aSeg ) { SHAPE_RECT r; VECTOR2I delta( aSeg.GetWidth() / 2, aSeg.GetWidth() / 2 ); VECTOR2I p0( aSeg.GetSeg().A - delta ); VECTOR2I p1( aSeg.GetSeg().B + delta ); return SHAPE_RECT( std::min( p0.x, p1.x ), std::min( p0.y, p1.y ), std::abs( p1.x - p0.x ), std::abs( p1.y - p0.y ) ); } OPT_BOX2I ChangedArea( const ITEM* aItemA, const ITEM* aItemB ) { if( aItemA->OfKind( ITEM::VIA_T ) && aItemB->OfKind( ITEM::VIA_T ) ) { const VIA* va = static_cast( aItemA ); const VIA* vb = static_cast( aItemB ); return va->ChangedArea( vb ); } else if( aItemA->OfKind( ITEM::LINE_T ) && aItemB->OfKind( ITEM::LINE_T ) ) { const LINE* la = static_cast ( aItemA ); const LINE* lb = static_cast ( aItemB ); return la->ChangedArea( lb ); } return OPT_BOX2I(); } OPT_BOX2I ChangedArea( const LINE& aLineA, const LINE& aLineB ) { return aLineA.ChangedArea( &aLineB ); } void HullIntersection( const SHAPE_LINE_CHAIN& hull, const SHAPE_LINE_CHAIN& line, SHAPE_LINE_CHAIN::INTERSECTIONS& ips ) { SHAPE_LINE_CHAIN::INTERSECTIONS ips_raw; if( line.PointCount() < 2 ) return; hull.Intersect( line, ips_raw ); for( auto& p : ips_raw ) { SHAPE_LINE_CHAIN::INTERSECTION ipp; SEG d1[2]; VECTOR2I d2[2]; int d1_idx = 0, d2_idx = 0; ipp = p; ipp.valid = false; if( !p.is_corner_our && !p.is_corner_their ) { ipp.valid = true; ips.push_back( ipp ); continue; } if( p.index_our >= hull.SegmentCount() ) p.index_our -= hull.SegmentCount(); if( p.is_corner_our ) { d1[0] = hull.CSegment( p.index_our ); d1[1] = hull.CSegment( p.index_our - 1 ); d1_idx = 2; } else { d1[0] = hull.CSegment( p.index_our ); d1_idx = 1; } if( p.is_corner_their ) { if( p.index_their > 0 ) { d2[d2_idx++] = line.CSegment( p.index_their - 1 ).A; } if( p.index_their < line.PointCount() - 1 ) { d2[d2_idx++] = line.CSegment( p.index_their ).B; } } else { d2[d2_idx++] = line.CSegment( p.index_their ).A; d2[d2_idx++] = line.CSegment( p.index_their ).B; } for( int i = 0; i < d1_idx; i++ ) { for( int j = 0; j < d2_idx; j++ ) { if( d1[i].Side( d2[j] ) > 0 ) { ipp.valid = true; } } } #ifdef TOM_EXTRA_DEBUG printf("p %d %d hi %d their %d co %d ct %d ipv %d\n", p.p.x, p.p.y, p.index_our, p.index_their, p.is_corner_our?1:0, p.is_corner_their?1:0, ipp.valid ?1:0); printf("d1 %d d2 %d\n", d1_idx, d2_idx ); #endif if( ipp.valid ) { ips.push_back( ipp ); } } } const SHAPE_LINE_CHAIN BuildHullForPrimitiveShape( const SHAPE* aShape, int aClearance, int aWalkaroundThickness ) { int cl = aClearance + ( aWalkaroundThickness + 1 )/ 2; switch( aShape->Type() ) { case SH_RECT: { const SHAPE_RECT* rect = static_cast( aShape ); return OctagonalHull( rect->GetPosition(), rect->GetSize(), cl, 0 ); } case SH_CIRCLE: { const SHAPE_CIRCLE* circle = static_cast( aShape ); int r = circle->GetRadius(); return OctagonalHull( circle->GetCenter() - VECTOR2I( r, r ), VECTOR2I( 2 * r, 2 * r ), cl, 2.0 * ( 1.0 - M_SQRT1_2 ) * ( r + cl ) ); } case SH_SEGMENT: { const SHAPE_SEGMENT* seg = static_cast( aShape ); return SegmentHull( *seg, aClearance, aWalkaroundThickness ); } case SH_ARC: { const SHAPE_ARC* arc = static_cast( aShape ); return ArcHull( *arc, aClearance, aWalkaroundThickness ); } case SH_SIMPLE: { const SHAPE_SIMPLE* convex = static_cast( aShape ); return ConvexHull( *convex, cl ); } default: { wxFAIL_MSG( wxString::Format( wxT( "Unsupported hull shape: %d (%s)." ), aShape->Type(), SHAPE_TYPE_asString( aShape->Type() ) ) ); break; } } return SHAPE_LINE_CHAIN(); } }