/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2022 KiCad Developers. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include <common.h> #include <board_design_settings.h> #include <footprint.h> #include <core/thread_pool.h> #include <zone.h> #include <connectivity/connectivity_data.h> #include <drc/drc_engine.h> #include <drc/drc_rtree.h> #include <drc/drc_cache_generator.h> bool DRC_CACHE_GENERATOR::Run() { m_board = m_drcEngine->GetBoard(); int& largestClearance = m_board->m_DRCMaxClearance; int& largestPhysicalClearance = m_board->m_DRCMaxPhysicalClearance; DRC_CONSTRAINT worstConstraint; LSET boardCopperLayers = LSET::AllCuMask( m_board->GetCopperLayerCount() ); largestClearance = std::max( largestClearance, m_board->GetMaxClearanceValue() ); if( m_drcEngine->QueryWorstConstraint( PHYSICAL_CLEARANCE_CONSTRAINT, worstConstraint ) ) largestPhysicalClearance = worstConstraint.GetValue().Min(); if( m_drcEngine->QueryWorstConstraint( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT, worstConstraint ) ) largestPhysicalClearance = std::max( largestPhysicalClearance, worstConstraint.GetValue().Min() ); std::set<ZONE*> allZones; for( ZONE* zone : m_board->Zones() ) { allZones.insert( zone ); if( !zone->GetIsRuleArea() ) { m_board->m_DRCZones.push_back( zone ); if( ( zone->GetLayerSet() & boardCopperLayers ).any() ) { m_board->m_DRCCopperZones.push_back( zone ); } } } for( FOOTPRINT* footprint : m_board->Footprints() ) { for( ZONE* zone : footprint->Zones() ) { allZones.insert( zone ); if( !zone->GetIsRuleArea() ) { m_board->m_DRCZones.push_back( zone ); if( ( zone->GetLayerSet() & boardCopperLayers ).any() ) m_board->m_DRCCopperZones.push_back( zone ); } } } // This is the number of tests between 2 calls to the progress bar size_t progressDelta = 200; size_t count = 0; size_t ii = 0; auto countItems = [&]( BOARD_ITEM* item ) -> bool { ++count; return true; }; auto addToCopperTree = [&]( BOARD_ITEM* item ) -> bool { if( !reportProgress( ii++, count, progressDelta ) ) return false; LSET copperLayers = item->GetLayerSet() & boardCopperLayers; // Special-case pad holes which pierce all the copper layers if( item->Type() == PCB_PAD_T ) { PAD* pad = static_cast<PAD*>( item ); if( pad->HasHole() ) copperLayers = boardCopperLayers; } for( PCB_LAYER_ID layer : copperLayers.Seq() ) { if( IsCopperLayer( layer ) ) m_board->m_CopperItemRTreeCache->Insert( item, layer, largestClearance ); } return true; }; if( !reportPhase( _( "Gathering copper items..." ) ) ) return false; // DRC cancelled static const std::vector<KICAD_T> itemTypes = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T, PCB_SHAPE_T, PCB_FIELD_T, PCB_TEXT_T, PCB_TEXTBOX_T, PCB_DIMENSION_T }; forEachGeometryItem( itemTypes, LSET::AllCuMask(), countItems ); { std::unique_lock<std::mutex> cacheLock( m_board->m_CachesMutex ); if( !m_board->m_CopperItemRTreeCache ) m_board->m_CopperItemRTreeCache = std::make_shared<DRC_RTREE>(); forEachGeometryItem( itemTypes, LSET::AllCuMask(), addToCopperTree ); } if( !reportPhase( _( "Tessellating copper zones..." ) ) ) return false; // DRC cancelled // Cache zone bounding boxes, triangulation, copper zone rtrees, and footprint courtyards // before we start. for( FOOTPRINT* footprint : m_board->Footprints() ) footprint->BuildCourtyardCaches(); thread_pool& tp = GetKiCadThreadPool(); std::vector<std::future<size_t>> returns; std::atomic<size_t> done( 1 ); returns.reserve( allZones.size() ); auto cache_zones = [this, &done]( ZONE* aZone ) -> size_t { if( m_drcEngine->IsCancelled() ) return 0; aZone->CacheBoundingBox(); aZone->CacheTriangulation(); if( !aZone->GetIsRuleArea() && aZone->IsOnCopperLayer() ) { std::unique_ptr<DRC_RTREE> rtree = std::make_unique<DRC_RTREE>(); for( PCB_LAYER_ID layer : aZone->GetLayerSet().Seq() ) { if( IsCopperLayer( layer ) ) rtree->Insert( aZone, layer ); } std::unique_lock<std::mutex> cacheLock( m_board->m_CachesMutex ); m_board->m_CopperZoneRTreeCache[ aZone ] = std::move( rtree ); done.fetch_add( 1 ); } return 1; }; for( ZONE* zone : allZones ) returns.emplace_back( tp.submit( cache_zones, zone ) ); for( const std::future<size_t>& ret : returns ) { std::future_status status = ret.wait_for( std::chrono::milliseconds( 250 ) ); while( status != std::future_status::ready ) { m_drcEngine->ReportProgress( static_cast<double>( done ) / allZones.size() ); status = ret.wait_for( std::chrono::milliseconds( 250 ) ); } } m_board->m_ZoneIsolatedIslandsMap.clear(); for( ZONE* zone : m_board->Zones() ) { if( !zone->GetIsRuleArea() && !zone->IsTeardropArea() ) { for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) m_board->m_ZoneIsolatedIslandsMap[ zone ][ layer ] = ISOLATED_ISLANDS(); } } std::shared_ptr<CONNECTIVITY_DATA> connectivity = m_board->GetConnectivity(); connectivity->ClearRatsnest(); connectivity->Build( m_board, m_drcEngine->GetProgressReporter() ); connectivity->FillIsolatedIslandsMap( m_board->m_ZoneIsolatedIslandsMap, true ); return !m_drcEngine->IsCancelled(); }