/*** * @file board_items_to_polygon_shape_transform.cpp * @brief function to convert shapes of items ( pads, tracks... ) to polygons */ /* Function to convert pads and tranck shapes to polygons * Used to fill zones areas */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // These variables are parameters used in addTextSegmToPoly. // But addTextSegmToPoly is a call-back function, // so we cannot send them as arguments. int s_textWidth; int s_textCircle2SegmentCount; CPOLYGONS_LIST* s_cornerBuffer; // This is a call back function, used by DrawGraphicText to draw the 3D text shape: static void addTextSegmToPoly( int x0, int y0, int xf, int yf ) { TransformRoundedEndsSegmentToPolygon( *s_cornerBuffer, wxPoint( x0, y0), wxPoint( xf, yf ), s_textCircle2SegmentCount, s_textWidth ); } /* generate pads shapes on layer aLayer as polygons, * and adds these polygons to aCornerBuffer * aCornerBuffer = the buffer to store polygons * aInflateValue = an additionnal size to add to pad shapes * aCircleToSegmentsCount = number of segments to approximate a circle * aCorrectionFactor = the correction to apply to a circle radius * to generate the polygon. * if aCorrectionFactor = 1.0, the polygon is inside the circle * the radius of circle approximated by segments is * initial radius * aCorrectionFactor */ void MODULE::TransformPadsShapesWithClearanceToPolygon( LAYER_NUM aLayer, CPOLYGONS_LIST& aCornerBuffer, int aInflateValue, int aCircleToSegmentsCount, double aCorrectionFactor ) { D_PAD* pad = Pads(); wxSize margin; for( ; pad != NULL; pad = pad->Next() ) { if( !pad->IsOnLayer(aLayer) ) continue; switch( aLayer ) { case SOLDERMASK_N_FRONT: case SOLDERMASK_N_BACK: margin.x = margin.y = pad->GetSolderMaskMargin() + aInflateValue; break; case SOLDERPASTE_N_FRONT: case SOLDERPASTE_N_BACK: margin = pad->GetSolderPasteMargin(); margin.x += aInflateValue; margin.y += aInflateValue; break; default: margin.x = margin.y = aInflateValue; break; } pad->BuildPadShapePolygon( aCornerBuffer, margin, aCircleToSegmentsCount, aCorrectionFactor ); } } /* generate shapes of graphic items (outlines) on layer aLayer as polygons, * and adds these polygons to aCornerBuffer * aCornerBuffer = the buffer to store polygons * aInflateValue = a value to inflate shapes * aCircleToSegmentsCount = number of segments to approximate a circle * aCorrectionFactor = the correction to apply to the circle radius * to generate the polygon. * if aCorrectionFactor = 1.0, the polygon is inside the circle * the radius of circle approximated by segments is * initial radius * aCorrectionFactor */ void MODULE::TransformGraphicShapesWithClearanceToPolygonSet( LAYER_NUM aLayer, CPOLYGONS_LIST& aCornerBuffer, int aInflateValue, int aCircleToSegmentsCount, double aCorrectionFactor ) { std::vector texts; // List of TEXTE_MODULE to convert EDGE_MODULE* outline; for( EDA_ITEM* item = GraphicalItems(); item != NULL; item = item->Next() ) { switch( item->Type() ) { case PCB_MODULE_TEXT_T: if( ((TEXTE_MODULE*)item)->GetLayer() == aLayer ) texts.push_back( (TEXTE_MODULE *) item ); break; case PCB_MODULE_EDGE_T: outline = (EDGE_MODULE*) item; if( outline->GetLayer() != aLayer ) break; switch( outline->GetShape() ) { case S_SEGMENT: TransformRoundedEndsSegmentToPolygon( aCornerBuffer, outline->GetStart(), outline->GetEnd(), aCircleToSegmentsCount, outline->GetWidth() ); break; case S_CIRCLE: TransformRingToPolygon( aCornerBuffer, outline->GetCenter(), outline->GetRadius(), aCircleToSegmentsCount, outline->GetWidth() ); break; case S_ARC: TransformArcToPolygon( aCornerBuffer, outline->GetCenter(), outline->GetArcStart(), outline->GetAngle(), aCircleToSegmentsCount, outline->GetWidth() ); break; case S_POLYGON: // for outline shape = S_POLYGON: // We must compute true coordinates from m_PolyPoints // which are relative to module position and module orientation = 0 for( unsigned ii = 0; ii < outline->GetPolyPoints().size(); ii++ ) { CPolyPt corner( outline->GetPolyPoints()[ii] ); RotatePoint( &corner.x, &corner.y, GetOrientation() ); corner.x += GetPosition().x; corner.y += GetPosition().y; aCornerBuffer.Append( corner ); } aCornerBuffer.CloseLastContour(); break; default: DBG( printf( "Error: Shape %d not implemented!\n", outline->GetShape() ); ) break; } break; default: break; } } // Convert texts sur modules if( Reference().GetLayer() == aLayer && Reference().IsVisible() ) texts.push_back( &Reference() ); if( Value().GetLayer() == aLayer && Value().IsVisible() ) texts.push_back( &Value() ); s_cornerBuffer = &aCornerBuffer; s_textCircle2SegmentCount = aCircleToSegmentsCount; for( unsigned ii = 0; ii < texts.size(); ii++ ) { TEXTE_MODULE *textmod = texts[ii]; s_textWidth = textmod->GetThickness() + ( 2 * aInflateValue ); wxSize size = textmod->GetSize(); if( textmod->IsMirrored() ) NEGATE( size.x ); DrawGraphicText( NULL, NULL, textmod->GetTextPosition(), BLACK, textmod->GetText(), textmod->GetDrawRotation(), size, textmod->GetHorizJustify(), textmod->GetVertJustify(), textmod->GetThickness(), textmod->IsItalic(), true, addTextSegmToPoly ); } } /* Function TransformSolidAreasShapesToPolygonSet * Convert solid areas full shapes to polygon set * (the full shape is the polygon area with a thick outline) * Used in 3D view * Arcs (ends of segments) are approximated by segments * aCornerBuffer = a buffer to store the polygons * aCircleToSegmentsCount = the number of segments to approximate a circle * aCorrectionFactor = the correction to apply to arcs radius to roughly * keep arc radius when approximated by segments */ void ZONE_CONTAINER::TransformSolidAreasShapesToPolygonSet( CPOLYGONS_LIST& aCornerBuffer, int aCircleToSegmentsCount, double aCorrectionFactor ) { unsigned cornerscount = GetFilledPolysList().GetCornersCount(); CPOLYGONS_LIST polygonslist; if( cornerscount == 0 ) return; // add filled areas polygons aCornerBuffer.Append( m_FilledPolysList ); // add filled areas outlines, which are drawn with thich lines wxPoint seg_start, seg_end; int i_start_contour = 0; for( unsigned ic = 0; ic < cornerscount; ic++ ) { seg_start.x = m_FilledPolysList[ ic ].x; seg_start.y = m_FilledPolysList[ ic ].y; unsigned ic_next = ic+1; if( !m_FilledPolysList[ic].end_contour && ic_next < cornerscount ) { seg_end.x = m_FilledPolysList[ ic_next ].x; seg_end.y = m_FilledPolysList[ ic_next ].y; } else { seg_end.x = m_FilledPolysList[ i_start_contour ].x; seg_end.y = m_FilledPolysList[ i_start_contour ].y; i_start_contour = ic_next; } TransformRoundedEndsSegmentToPolygon( aCornerBuffer, seg_start, seg_end, aCircleToSegmentsCount, GetMinThickness() ); } } /** * Function TransformBoundingBoxWithClearanceToPolygon * Convert the text bonding box to a rectangular polygon * Used in filling zones calculations * Circles and arcs are approximated by segments * @param aCornerBuffer = a buffer to store the polygon * @param aClearanceValue = the clearance around the pad */ void TEXTE_PCB::TransformBoundingBoxWithClearanceToPolygon( CPOLYGONS_LIST& aCornerBuffer, int aClearanceValue ) const { if( GetText().Length() == 0 ) return; CPolyPt corners[4]; // Buffer of polygon corners EDA_RECT rect = GetTextBox( -1 ); rect.Inflate( aClearanceValue ); corners[0].x = rect.GetOrigin().x; corners[0].y = rect.GetOrigin().y; corners[1].y = corners[0].y; corners[1].x = rect.GetRight(); corners[2].x = corners[1].x; corners[2].y = rect.GetBottom(); corners[3].y = corners[2].y; corners[3].x = corners[0].x; for( int ii = 0; ii < 4; ii++ ) { // Rotate polygon RotatePoint( &corners[ii].x, &corners[ii].y, m_Pos.x, m_Pos.y, m_Orient ); aCornerBuffer.Append( corners[ii] ); } aCornerBuffer.CloseLastContour(); } /* Function TransformShapeWithClearanceToPolygonSet * Convert the text shape to a set of polygons (one by segment) * Used in filling zones calculations and 3D view * Circles and arcs are approximated by segments * aCornerBuffer = CPOLYGONS_LIST to store the polygon corners * aClearanceValue = the clearance around the text * aCircleToSegmentsCount = the number of segments to approximate a circle * aCorrectionFactor = the correction to apply to circles radius to keep * clearance when the circle is approximated by segment bigger or equal * to the real clearance value (usually near from 1.0) */ void TEXTE_PCB::TransformShapeWithClearanceToPolygonSet( CPOLYGONS_LIST& aCornerBuffer, int aClearanceValue, int aCircleToSegmentsCount, double aCorrectionFactor ) const { wxSize size = GetSize(); if( IsMirrored() ) NEGATE( size.x ); s_cornerBuffer = &aCornerBuffer; s_textWidth = GetThickness() + ( 2 * aClearanceValue ); s_textCircle2SegmentCount = aCircleToSegmentsCount; EDA_COLOR_T color = BLACK; // not actually used, but needed by DrawGraphicText if( IsMultilineAllowed() ) { wxArrayString* list = wxStringSplit( GetText(), '\n' ); std::vector positions; positions.reserve( list->Count() ); GetPositionsOfLinesOfMultilineText( positions, list->Count() ); for( unsigned ii = 0; ii < list->Count(); ii++ ) { wxString txt = list->Item( ii ); DrawGraphicText( NULL, NULL, positions[ii], color, txt, GetOrientation(), size, GetHorizJustify(), GetVertJustify(), GetThickness(), IsItalic(), true, addTextSegmToPoly ); } delete list; } else { DrawGraphicText( NULL, NULL, GetTextPosition(), color, GetText(), GetOrientation(), size, GetHorizJustify(), GetVertJustify(), GetThickness(), IsItalic(), true, addTextSegmToPoly ); } } /** * Function TransformShapeWithClearanceToPolygon * Convert the track shape to a closed polygon * Used in filling zones calculations * Circles and arcs are approximated by segments * @param aCornerBuffer = a buffer to store the polygon * @param aClearanceValue = the clearance around the pad * @param aCircleToSegmentsCount = the number of segments to approximate a circle * @param aCorrectionFactor = the correction to apply to circles radius to keep * clearance when the circle is approxiamted by segment bigger or equal * to the real clearance value (usually near from 1.0) */ void DRAWSEGMENT::TransformShapeWithClearanceToPolygon( CPOLYGONS_LIST& aCornerBuffer, int aClearanceValue, int aCircleToSegmentsCount, double aCorrectionFactor ) const { switch( m_Shape ) { case S_CIRCLE: TransformRingToPolygon( aCornerBuffer, GetCenter(), GetRadius(), aCircleToSegmentsCount, m_Width + (2 * aClearanceValue) ) ; break; case S_ARC: TransformArcToPolygon( aCornerBuffer, GetCenter(), GetArcStart(), m_Angle, aCircleToSegmentsCount, m_Width + (2 * aClearanceValue) ); break; default: TransformRoundedEndsSegmentToPolygon( aCornerBuffer, m_Start, m_End, aCircleToSegmentsCount, m_Width + (2 * aClearanceValue) ); break; } } /** * Function TransformShapeWithClearanceToPolygon * Convert the track shape to a closed polygon * Used in filling zones calculations * Circles (vias) and arcs (ends of tracks) are approximated by segments * @param aCornerBuffer = a buffer to store the polygon * @param aClearanceValue = the clearance around the pad * @param aCircleToSegmentsCount = the number of segments to approximate a circle * @param aCorrectionFactor = the correction to apply to circles radius to keep * clearance when the circle is approximated by segment bigger or equal * to the real clearance value (usually near from 1.0) */ void TRACK:: TransformShapeWithClearanceToPolygon( CPOLYGONS_LIST& aCornerBuffer, int aClearanceValue, int aCircleToSegmentsCount, double aCorrectionFactor ) const { switch( Type() ) { case PCB_VIA_T: { int radius = (m_Width / 2) + aClearanceValue; radius = KiROUND( radius * aCorrectionFactor ); TransformCircleToPolygon( aCornerBuffer, m_Start, radius, aCircleToSegmentsCount ); } break; default: TransformRoundedEndsSegmentToPolygon( aCornerBuffer, m_Start, m_End, aCircleToSegmentsCount, m_Width + ( 2 * aClearanceValue) ); break; } } /* Function TransformShapeWithClearanceToPolygon * Convert the pad shape to a closed polygon * Used in filling zones calculations and 3D view generation * Circles and arcs are approximated by segments * aCornerBuffer = a CPOLYGONS_LIST to store the polygon corners * aClearanceValue = the clearance around the pad * aCircleToSegmentsCount = the number of segments to approximate a circle * aCorrectionFactor = the correction to apply to circles radius to keep * clearance when the circle is approximated by segment bigger or equal * to the real clearance value (usually near from 1.0) */ void D_PAD:: TransformShapeWithClearanceToPolygon( CPOLYGONS_LIST& aCornerBuffer, int aClearanceValue, int aCircleToSegmentsCount, double aCorrectionFactor ) const { wxPoint corner_position; double angle; int dx = (m_Size.x / 2) + aClearanceValue; int dy = (m_Size.y / 2) + aClearanceValue; double delta = 3600.0 / aCircleToSegmentsCount; // rot angle in 0.1 degree wxPoint PadShapePos = ShapePos(); /* Note: for pad having a shape offset, * the pad position is NOT the shape position */ wxSize psize = m_Size; /* pad size unsed in RECT and TRAPEZOIDAL pads * trapezoidal pads are considered as rect * pad shape having they boudary box size */ switch( GetShape() ) { case PAD_CIRCLE: dx = KiROUND( dx * aCorrectionFactor ); TransformCircleToPolygon( aCornerBuffer, PadShapePos, dx, aCircleToSegmentsCount ); break; case PAD_OVAL: // An oval pad has the same shape as a segment with rounded ends angle = m_Orient; { int width; wxPoint shape_offset; if( dy > dx ) // Oval pad X/Y ratio for choosing translation axis { dy = KiROUND( dy * aCorrectionFactor ); shape_offset.y = dy - dx; width = dx * 2; } else //if( dy <= dx ) { dx = KiROUND( dx * aCorrectionFactor ); shape_offset.x = dy - dx; width = dy * 2; } RotatePoint( &shape_offset, angle ); wxPoint start = PadShapePos - shape_offset; wxPoint end = PadShapePos + shape_offset; TransformRoundedEndsSegmentToPolygon( aCornerBuffer, start, end, aCircleToSegmentsCount, width ); } break; case PAD_TRAPEZOID: psize.x += std::abs( m_DeltaSize.y ); psize.y += std::abs( m_DeltaSize.x ); // fall through case PAD_RECT: // Easy implementation for rectangular cutouts with rounded corners angle = m_Orient; // Corner rounding radius int rounding_radius = KiROUND( aClearanceValue * aCorrectionFactor ); double angle_pg; // Polygon increment angle for( int i = 0; i < aCircleToSegmentsCount / 4 + 1; i++ ) { corner_position = wxPoint( 0, -rounding_radius ); RotatePoint( &corner_position, (1800.0 / aCircleToSegmentsCount) ); // Start at half increment offset angle_pg = i * delta; RotatePoint( &corner_position, angle_pg ); // Rounding vector rotation corner_position -= psize / 2; // Rounding vector + Pad corner offset RotatePoint( &corner_position, angle ); // Rotate according to module orientation corner_position += PadShapePos; // Shift origin to position CPolyPt polypoint( corner_position.x, corner_position.y ); aCornerBuffer.Append( polypoint ); } for( int i = 0; i < aCircleToSegmentsCount / 4 + 1; i++ ) { corner_position = wxPoint( -rounding_radius, 0 ); RotatePoint( &corner_position, (1800.0 / aCircleToSegmentsCount) ); angle_pg = i * delta; RotatePoint( &corner_position, angle_pg ); corner_position -= wxPoint( psize.x / 2, -psize.y / 2 ); RotatePoint( &corner_position, angle ); corner_position += PadShapePos; CPolyPt polypoint( corner_position.x, corner_position.y ); aCornerBuffer.Append( polypoint ); } for( int i = 0; i < aCircleToSegmentsCount / 4 + 1; i++ ) { corner_position = wxPoint( 0, rounding_radius ); RotatePoint( &corner_position, (1800.0 / aCircleToSegmentsCount) ); angle_pg = i * delta; RotatePoint( &corner_position, angle_pg ); corner_position += psize / 2; RotatePoint( &corner_position, angle ); corner_position += PadShapePos; CPolyPt polypoint( corner_position.x, corner_position.y ); aCornerBuffer.Append( polypoint ); } for( int i = 0; i < aCircleToSegmentsCount / 4 + 1; i++ ) { corner_position = wxPoint( rounding_radius, 0 ); RotatePoint( &corner_position, (1800.0 / aCircleToSegmentsCount) ); angle_pg = i * delta; RotatePoint( &corner_position, angle_pg ); corner_position -= wxPoint( -psize.x / 2, psize.y / 2 ); RotatePoint( &corner_position, angle ); corner_position += PadShapePos; CPolyPt polypoint( corner_position.x, corner_position.y ); aCornerBuffer.Append( polypoint ); } aCornerBuffer.CloseLastContour(); break; } } /* * Function BuildPadShapePolygon * Build the Corner list of the polygonal shape, * depending on shape, extra size (clearance ...) pad and orientation * Note: for Round and oval pads this function is equivalent to * TransformShapeWithClearanceToPolygon, but not for other shapes */ void D_PAD::BuildPadShapePolygon( CPOLYGONS_LIST& aCornerBuffer, wxSize aInflateValue, int aSegmentsPerCircle, double aCorrectionFactor ) const { wxPoint corners[4]; wxPoint PadShapePos = ShapePos(); /* Note: for pad having a shape offset, * the pad position is NOT the shape position */ switch( GetShape() ) { case PAD_CIRCLE: case PAD_OVAL: TransformShapeWithClearanceToPolygon( aCornerBuffer, aInflateValue.x, aSegmentsPerCircle, aCorrectionFactor ); break; case PAD_TRAPEZOID: case PAD_RECT: BuildPadPolygon( corners, aInflateValue, m_Orient ); for( int ii = 0; ii < 4; ii++ ) { corners[ii] += PadShapePos; // Shift origin to position CPolyPt polypoint( corners[ii].x, corners[ii].y ); aCornerBuffer.Append( polypoint ); } aCornerBuffer.CloseLastContour(); break; } } /* * Function BuildPadDrillShapePolygon * Build the Corner list of the polygonal drill shape, * depending on shape pad hole and orientation * return false if the pad has no hole, true otherwise */ bool D_PAD::BuildPadDrillShapePolygon( CPOLYGONS_LIST& aCornerBuffer, int aInflateValue, int aSegmentsPerCircle ) const { wxSize drillsize = GetDrillSize(); bool hasHole = drillsize.x && drillsize.y; if( ! hasHole ) return false; drillsize.x += aInflateValue; drillsize.y += aInflateValue; if( drillsize.x == drillsize.y ) // usual round hole { TransformCircleToPolygon( aCornerBuffer, GetPosition(), drillsize.x /2, aSegmentsPerCircle ); } else // Oblong hole { wxPoint ends_offset; int width; if( drillsize.x > drillsize.y ) // Horizontal oval { ends_offset.x = ( drillsize.x - drillsize.y ) / 2; width = drillsize.y; } else // Vertical oval { ends_offset.y = ( drillsize.y - drillsize.x ) / 2; width = drillsize.x; } RotatePoint( &ends_offset, GetOrientation() ); wxPoint start = GetPosition() + ends_offset; wxPoint end = GetPosition() - ends_offset; // Prepare the shape creation TransformRoundedEndsSegmentToPolygon( aCornerBuffer, start, end, aSegmentsPerCircle, width ); } return true; } /** * Function CreateThermalReliefPadPolygon * Add holes around a pad to create a thermal relief * copper thickness is min (dx/2, aCopperWitdh) or min (dy/2, aCopperWitdh) * @param aCornerBuffer = a buffer to store the polygon * @param aPad = the current pad used to create the thermal shape * @param aThermalGap = gap in thermal shape * @param aCopperThickness = stubs thickness in thermal shape * @param aMinThicknessValue = min copper thickness allowed * @param aCircleToSegmentsCount = the number of segments to approximate a circle * @param aCorrectionFactor = the correction to apply to circles radius to keep * @param aThermalRot = for rond pads the rotation of thermal stubs (450 usually for 45 deg.) */ /* thermal reliefs are created as 4 polygons. * each corner of a polygon if calculated for a pad at position 0, 0, orient 0, * and then moved and rotated acroding to the pad position and orientation */ /* * Note 1: polygons are drawm using outlines witk a thickness = aMinThicknessValue * so shapes must take in account this outline thickness * * Note 2: * Trapezoidal pads are not considered here because they are very special case * and are used in microwave applications and they *DO NOT* have a thermal relief that * change the shape by creating stubs and destroy their properties. */ void CreateThermalReliefPadPolygon( CPOLYGONS_LIST& aCornerBuffer, D_PAD& aPad, int aThermalGap, int aCopperThickness, int aMinThicknessValue, int aCircleToSegmentsCount, double aCorrectionFactor, double aThermalRot ) { wxPoint corner, corner_end; wxPoint PadShapePos = aPad.ShapePos(); // Note: for pad having a shape offset, // the pad position is NOT the shape position wxSize copper_thickness; int dx = aPad.GetSize().x / 2; int dy = aPad.GetSize().y / 2; double delta = 3600.0 / aCircleToSegmentsCount; // rot angle in 0.1 degree /* Keep in account the polygon outline thickness * aThermalGap must be increased by aMinThicknessValue/2 because drawing external outline * with a thickness of aMinThicknessValue will reduce gap by aMinThicknessValue/2 */ aThermalGap += aMinThicknessValue / 2; /* Keep in account the polygon outline thickness * copper_thickness must be decreased by aMinThicknessValue because drawing outlines * with a thickness of aMinThicknessValue will increase real thickness by aMinThicknessValue */ aCopperThickness -= aMinThicknessValue; if( aCopperThickness < 0 ) aCopperThickness = 0; copper_thickness.x = std::min( dx, aCopperThickness ); copper_thickness.y = std::min( dy, aCopperThickness ); switch( aPad.GetShape() ) { case PAD_CIRCLE: // Add 4 similar holes { /* we create 4 copper holes and put them in position 1, 2, 3 and 4 * here is the area of the rectangular pad + its thermal gap * the 4 copper holes remove the copper in order to create the thermal gap * 4 ------ 1 * | | * | | * | | * | | * 3 ------ 2 * holes 2, 3, 4 are the same as hole 1, rotated 90, 180, 270 deg */ // Build the hole pattern, for the hole in the X >0, Y > 0 plane: // The pattern roughtly is a 90 deg arc pie std::vector corners_buffer; // Radius of outer arcs of the shape corrected for arc approximation by lines int outer_radius = KiROUND( (dx + aThermalGap) * aCorrectionFactor ); // Crosspoint of thermal spoke sides, the first point of polygon buffer corners_buffer.push_back( wxPoint( copper_thickness.x / 2, copper_thickness.y / 2 ) ); // Add an intermediate point on spoke sides, to allow a > 90 deg angle between side // and first seg of arc approx corner.x = copper_thickness.x / 2; int y = outer_radius - (aThermalGap / 4); corner.y = KiROUND( sqrt( ( (double) y * y - (double) corner.x * corner.x ) ) ); if( aThermalRot != 0 ) corners_buffer.push_back( corner ); // calculate the starting point of the outter arc corner.x = copper_thickness.x / 2; corner.y = KiROUND( sqrt( ( (double) outer_radius * outer_radius ) - ( (double) corner.x * corner.x ) ) ); RotatePoint( &corner, 90 ); // 9 degrees is the spoke fillet size // calculate the ending point of the outter arc corner_end.x = corner.y; corner_end.y = corner.x; // calculate intermediate points (y coordinate from corner.y to corner_end.y while( (corner.y > corner_end.y) && (corner.x < corner_end.x) ) { corners_buffer.push_back( corner ); RotatePoint( &corner, delta ); } corners_buffer.push_back( corner_end ); /* add an intermediate point, to avoid angles < 90 deg between last arc approx line * and radius line */ corner.x = corners_buffer[1].y; corner.y = corners_buffer[1].x; corners_buffer.push_back( corner ); // Now, add the 4 holes ( each is the pattern, rotated by 0, 90, 180 and 270 deg // aThermalRot = 450 (45.0 degrees orientation) work fine. double angle_pad = aPad.GetOrientation(); // Pad orientation double th_angle = aThermalRot; for( unsigned ihole = 0; ihole < 4; ihole++ ) { for( unsigned ii = 0; ii < corners_buffer.size(); ii++ ) { corner = corners_buffer[ii]; RotatePoint( &corner, th_angle + angle_pad ); // Rotate by segment angle and pad orientation corner += PadShapePos; aCornerBuffer.Append( CPolyPt( corner.x, corner.y ) ); } aCornerBuffer.CloseLastContour(); th_angle += 900; // Note: th_angle in in 0.1 deg. } } break; case PAD_OVAL: { // Oval pad support along the lines of round and rectangular pads std::vector corners_buffer; // Polygon buffer as vector int dx = (aPad.GetSize().x / 2) + aThermalGap; // Cutout radius x int dy = (aPad.GetSize().y / 2) + aThermalGap; // Cutout radius y wxPoint shape_offset; // We want to calculate an oval shape with dx > dy. // if this is not the case, exchange dx and dy, and rotate the shape 90 deg. int supp_angle = 0; if( dx < dy ) { EXCHG( dx, dy ); supp_angle = 900; EXCHG( copper_thickness.x, copper_thickness.y ); } int deltasize = dx - dy; // = distance between shape position and the 2 demi-circle ends centre // here we have dx > dy // Radius of outer arcs of the shape: int outer_radius = dy; // The radius of the outer arc is radius end + aThermalGap // Some coordinate fiddling, depending on the shape offset direction shape_offset = wxPoint( deltasize, 0 ); // Crosspoint of thermal spoke sides, the first point of polygon buffer corner.x = copper_thickness.x / 2; corner.y = copper_thickness.y / 2; corners_buffer.push_back( corner ); // Arc start point calculation, the intersecting point of cutout arc and thermal spoke edge // If copper thickness is more than shape offset, we need to calculate arc intercept point. if( copper_thickness.x > deltasize ) { corner.x = copper_thickness.x / 2; corner.y = KiROUND( sqrt( ( (double) outer_radius * outer_radius ) - ( (double) ( corner.x - delta ) * ( corner.x - deltasize ) ) ) ); corner.x -= deltasize; /* creates an intermediate point, to have a > 90 deg angle * between the side and the first segment of arc approximation */ wxPoint intpoint = corner; intpoint.y -= aThermalGap / 4; corners_buffer.push_back( intpoint + shape_offset ); RotatePoint( &corner, 90 ); // 9 degrees of thermal fillet } else { corner.x = copper_thickness.x / 2; corner.y = outer_radius; corners_buffer.push_back( corner ); } // Add an intermediate point on spoke sides, to allow a > 90 deg angle between side // and first seg of arc approx wxPoint last_corner; last_corner.y = copper_thickness.y / 2; int px = outer_radius - (aThermalGap / 4); last_corner.x = KiROUND( sqrt( ( ( (double) px * px ) - (double) last_corner.y * last_corner.y ) ) ); // Arc stop point calculation, the intersecting point of cutout arc and thermal spoke edge corner_end.y = copper_thickness.y / 2; corner_end.x = KiROUND( sqrt( ( (double) outer_radius * outer_radius ) - ( (double) corner_end.y * corner_end.y ) ) ); RotatePoint( &corner_end, -90 ); // 9 degrees of thermal fillet // calculate intermediate arc points till limit is reached while( (corner.y > corner_end.y) && (corner.x < corner_end.x) ) { corners_buffer.push_back( corner + shape_offset ); RotatePoint( &corner, delta ); } //corners_buffer.push_back(corner + shape_offset); // TODO: about one mil geometry error forms somewhere. corners_buffer.push_back( corner_end + shape_offset ); corners_buffer.push_back( last_corner + shape_offset ); // Enabling the line above shows intersection point. /* Create 2 holes, rotated by pad rotation. */ double angle = aPad.GetOrientation() + supp_angle; for( int irect = 0; irect < 2; irect++ ) { for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) { wxPoint cpos = corners_buffer[ic]; RotatePoint( &cpos, angle ); cpos += PadShapePos; aCornerBuffer.Append( CPolyPt( cpos.x, cpos.y ) ); } aCornerBuffer.CloseLastContour(); angle = AddAngles( angle, 1800 ); // this is calculate hole 3 } // Create holes, that are the mirrored from the previous holes for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) { wxPoint swap = corners_buffer[ic]; swap.x = -swap.x; corners_buffer[ic] = swap; } // Now add corner 4 and 2 (2 is the corner 4 rotated by 180 deg angle = aPad.GetOrientation() + supp_angle; for( int irect = 0; irect < 2; irect++ ) { for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) { wxPoint cpos = corners_buffer[ic]; RotatePoint( &cpos, angle ); cpos += PadShapePos; aCornerBuffer.Append( CPolyPt( cpos.x, cpos.y ) ); } aCornerBuffer.CloseLastContour(); angle = AddAngles( angle, 1800 ); } } break; case PAD_RECT: // draw 4 Holes { /* we create 4 copper holes and put them in position 1, 2, 3 and 4 * here is the area of the rectangular pad + its thermal gap * the 4 copper holes remove the copper in order to create the thermal gap * 4 ------ 1 * | | * | | * | | * | | * 3 ------ 2 * hole 3 is the same as hole 1, rotated 180 deg * hole 4 is the same as hole 2, rotated 180 deg and is the same as hole 1, mirrored */ // First, create a rectangular hole for position 1 : // 2 ------- 3 // | | // | | // | | // 1 -------4 // Modified rectangles with one corner rounded. TODO: merging with oval thermals // and possibly round too. std::vector corners_buffer; // Polygon buffer as vector int dx = (aPad.GetSize().x / 2) + aThermalGap; // Cutout radius x int dy = (aPad.GetSize().y / 2) + aThermalGap; // Cutout radius y // The first point of polygon buffer is left lower corner, second the crosspoint of // thermal spoke sides, the third is upper right corner and the rest are rounding // vertices going anticlockwise. Note the inveted Y-axis in CG. corners_buffer.push_back( wxPoint( -dx, -(aThermalGap / 4 + copper_thickness.y / 2) ) ); // Adds small miters to zone corners_buffer.push_back( wxPoint( -(dx - aThermalGap / 4), -copper_thickness.y / 2 ) ); // fill and spoke corner corners_buffer.push_back( wxPoint( -copper_thickness.x / 2, -copper_thickness.y / 2 ) ); corners_buffer.push_back( wxPoint( -copper_thickness.x / 2, -(dy - aThermalGap / 4) ) ); corners_buffer.push_back( wxPoint( -(aThermalGap / 4 + copper_thickness.x / 2), -dy ) ); double angle = aPad.GetOrientation(); int rounding_radius = KiROUND( aThermalGap * aCorrectionFactor ); // Corner rounding radius double angle_pg; // Polygon increment angle for( int i = 0; i < aCircleToSegmentsCount / 4 + 1; i++ ) { wxPoint corner_position = wxPoint( 0, -rounding_radius ); // Start at half increment offset RotatePoint( &corner_position, 1800.0 / aCircleToSegmentsCount ); angle_pg = i * delta; RotatePoint( &corner_position, angle_pg ); // Rounding vector rotation corner_position -= aPad.GetSize() / 2; // Rounding vector + Pad corner offset corners_buffer.push_back( wxPoint( corner_position.x, corner_position.y ) ); } for( int irect = 0; irect < 2; irect++ ) { for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) { wxPoint cpos = corners_buffer[ic]; RotatePoint( &cpos, angle ); // Rotate according to module orientation cpos += PadShapePos; // Shift origin to position aCornerBuffer.Append( CPolyPt( cpos.x, cpos.y ) ); } aCornerBuffer.CloseLastContour(); angle = AddAngles( angle, 1800 ); // this is calculate hole 3 } // Create holes, that are the mirrored from the previous holes for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) { wxPoint swap = corners_buffer[ic]; swap.x = -swap.x; corners_buffer[ic] = swap; } // Now add corner 4 and 2 (2 is the corner 4 rotated by 180 deg for( int irect = 0; irect < 2; irect++ ) { for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) { wxPoint cpos = corners_buffer[ic]; RotatePoint( &cpos, angle ); cpos += PadShapePos; aCornerBuffer.Append( CPolyPt( cpos.x, cpos.y ) ); } aCornerBuffer.CloseLastContour(); angle = AddAngles( angle, 1800 ); } } break; default: ; } }