/* * Copyright (C) 1998, 2000-2007, 2010, 2011, 2012, 2013 SINTEF ICT, * Applied Mathematics, Norway. * * Contact information: E-mail: tor.dokken@sintef.no * SINTEF ICT, Department of Applied Mathematics, * P.O. Box 124 Blindern, * 0314 Oslo, Norway. * * This file is part of TTL. * * TTL is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * TTL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public * License along with TTL. If not, see * . * * In accordance with Section 7(b) of the GNU Affero General Public * License, a covered work must retain the producer line in every data * file that is created or manipulated using TTL. * * Other Usage * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial activities involving the TTL library without * disclosing the source code of your own applications. * * This file may be used in accordance with the terms contained in a * written agreement between you and SINTEF ICT. */ #ifndef _TTL_H_ #define _TTL_H_ #include #include // Debugging #ifdef DEBUG_TTL static void errorAndExit(char* message) { cout << "\n!!! ERROR: " << message << " !!!\n" << endl; exit(-1); } #endif // Next on TOPOLOGY: // - get triangle strips // - weighted graph, algorithms using a weight (real) for each edge, // e.g. an "abstract length". Use for minimum spanning tree // or some arithmetics on weights? // - Circulators as defined in CGAL with more STL compliant code // - analyze in detail locateFace: e.g. detect 0-orbit in case of infinite loop // around a node etc. /** \brief Main interface to TTL * * This namespace contains the basic generic algorithms for the TTL, * the Triangulation Template Library.\n * * Examples of functionality are: * - Incremental Delaunay triangulation * - Constrained triangulation * - Insert/remove nodes and constrained edges * - Traversal operations * - Misc. queries for extracting information for visualisation systems etc. * * \par General requirements and assumptions: * - \e DartType and \e TraitsType should be implemented in accordance with the description * in \ref api. * - A \b "Requires:" section in the documentation of a function template * shows which functionality is required in \e TraitsType to * support that specific function.\n * Functionalty required in \e DartType is the same (almost) for all * function templates; see \ref api and the example referred to. * - When a reference to a \e dart object is passed to a function in TTL, * it is assumed that it is oriented \e counterclockwise (CCW) in a triangle * unless it is explicitly mentioned that it can also be \e clockwise (CW). * The same applies for a dart that is passed from a function in TTL to * the users TraitsType class (or struct). * - When an edge (represented with a dart) is swapped, it is assumed that darts * outside the quadrilateral where the edge is a diagonal are not affected by * the swap. Thus, \ref hed::TTLtraits::swapEdge "TraitsType::swapEdge" * must be implemented in accordance with this rule. * * \par Glossary: * - General terms are explained in \ref api. * - \e CCW - counterclockwise * - \e CW - clockwise * - \e 0_orbit, \e 1_orbit and \e 2_orbit: A sequence of darts around * a node, around an edge and in a triangle respectively; * see get_0_orbit_interior and get_0_orbit_boundary * - \e arc - In a triangulation an arc is equivalent with an edge * * \see * \ref ttl_util and \ref api * * \author * �yvind Hjelle, oyvindhj@ifi.uio.no */ namespace ttl { class TriangulationHelper { #ifndef DOXYGEN_SHOULD_SKIP_THIS public: TriangulationHelper(hed::Triangulation& triang) : triangulation(triang) { } // Delaunay Triangulation // ---------------------- template bool insertNode(DartType& dart, PointType& point); template void removeRectangularBoundary(DartType& dart); template void removeNode(DartType& dart); template void removeBoundaryNode(DartType& dart); template void removeInteriorNode(DartType& dart); // Topological and Geometric Queries // --------------------------------- template static bool locateFaceSimplest(const PointType& point, DartType& dart); template static bool locateTriangle(const PointType& point, DartType& dart); template static bool inTriangleSimplest(const PointType& point, const DartType& dart); template static bool inTriangle(const PointType& point, const DartType& dart); template static void getBoundary(const DartType& dart, DartListType& boundary); template static bool isBoundaryEdge(const DartType& dart); template static bool isBoundaryFace(const DartType& dart); template static bool isBoundaryNode(const DartType& dart); template static int getDegreeOfNode(const DartType& dart); template static void get_0_orbit_interior(const DartType& dart, DartListType& orbit); template static void get_0_orbit_boundary(const DartType& dart, DartListType& orbit); template static bool same_0_orbit(const DartType& d1, const DartType& d2); template static bool same_1_orbit(const DartType& d1, const DartType& d2); template static bool same_2_orbit(const DartType& d1, const DartType& d2); template static bool swappableEdge(const DartType& dart, bool allowDegeneracy = false); template static void positionAtNextBoundaryEdge(DartType& dart); template static bool convexBoundary(const DartType& dart); // Utilities for Delaunay Triangulation // ------------------------------------ template void optimizeDelaunay(DartListType& elist); template void optimizeDelaunay(DartListType& elist, const typename DartListType::iterator end); template bool swapTestDelaunay(const DartType& dart, bool cycling_check = false) const; template void recSwapDelaunay(DartType& diagonal); template void swapEdgesAwayFromInteriorNode(DartType& dart, ListType& swapped_edges); template void swapEdgesAwayFromBoundaryNode(DartType& dart, ListType& swapped_edges); template void swapEdgeInList(const typename DartListType::iterator& it, DartListType& elist); // Constrained Triangulation // ------------------------- template static DartType insertConstraint(DartType& dstart, DartType& dend, bool optimize_delaunay); private: hed::Triangulation& triangulation; template void insertNodes(ForwardIterator first, ForwardIterator last, DartType& dart); template static bool isMemberOfFace(const TopologyElementType& topologyElement, const DartType& dart); template static bool locateFaceWithNode(const NodeType& node, DartType& dart_iter); template static void getAdjacentTriangles(const DartType& dart, DartType& t1, DartType& t2, DartType& t3); template static void getNeighborNodes(const DartType& dart, std::list& node_list, bool& boundary); template static bool degenerateTriangle(const DartType& dart); }; #endif // DOXYGEN_SHOULD_SKIP_THIS //------------------------------------------------------------------------------------------------ // ------------------------------- Delaunay Triangulation Group --------------------------------- //------------------------------------------------------------------------------------------------ /** @name Delaunay Triangulation */ //@{ //------------------------------------------------------------------------------------------------ /** Inserts a new node in an existing Delaunay triangulation and * swaps edges to obtain a new Delaunay triangulation. * This is the basic function for incremental Delaunay triangulation. * When starting from a set of points, an initial Delaunay triangulation * can be created as two triangles forming a rectangle that contains * all the points. * After \c insertNode has been called repeatedly with all the points, * removeRectangularBoundary can be called to remove triangles * at the boundary of the triangulation so that the boundary * form the convex hull of the points. * * Note that this incremetal scheme will run much faster if the points * have been sorted lexicographically on \e x and \e y. * * \param dart * An arbitrary CCW dart in the tringulation.\n * Output: A CCW dart incident to the new node. * * \param point * A point (node) to be inserted in the triangulation. * * \retval bool * \c true if \e point was inserted; \c false if not.\n * If \e point is outside the triangulation, or the input dart is not valid, * \c false is returned. * * \require * - \ref hed::TTLtraits::splitTriangle "TraitsType::splitTriangle" (DartType&, const PointType&) * * \using * - locateTriangle * - recSwapDelaunay * * \note * - For efficiency reasons \e dart should be close to the insertion \e point. * * \see * removeRectangularBoundary */ template bool TriangulationHelper::insertNode(DartType& dart, PointType& point) { bool found = locateTriangle(point, dart); if (!found) { #ifdef DEBUG_TTL cout << "ERROR: Triangulation::insertNode: NO triangle found. /n"; #endif return false; } // ??? can we hide the dart? this is not possible if one triangle only triangulation.splitTriangle(dart, point); DartType d1 = dart; d1.alpha2().alpha1().alpha2().alpha0().alpha1(); DartType d2 = dart; d2.alpha1().alpha0().alpha1(); // Preserve a dart as output incident to the node and CCW DartType d3 = dart; d3.alpha2(); dart = d3; // and see below //DartType dsav = d3; d3.alpha0().alpha1(); //if (!TraitsType::fixedEdge(d1) && !isBoundaryEdge(d1)) { if (!isBoundaryEdge(d1)) { d1.alpha2(); recSwapDelaunay(d1); } //if (!TraitsType::fixedEdge(d2) && !isBoundaryEdge(d2)) { if (!isBoundaryEdge(d2)) { d2.alpha2(); recSwapDelaunay(d2); } // Preserve the incoming dart as output incident to the node and CCW //d = dsav.alpha2(); dart.alpha2(); //if (!TraitsType::fixedEdge(d3) && !isBoundaryEdge(d3)) { if (!isBoundaryEdge(d3)) { d3.alpha2(); recSwapDelaunay(d3); } return true; } //------------------------------------------------------------------------------------------------ // Private/Hidden function (might change later) template void TriangulationHelper::insertNodes(ForwardIterator first, ForwardIterator last, DartType& dart) { // Assumes that the dereferenced point objects are pointers. // References to the point objects are then passed to TTL. ForwardIterator it; for (it = first; it != last; ++it) { insertNode(dart, **it); } } //------------------------------------------------------------------------------------------------ /** Removes the rectangular boundary of a triangulation as a final step of an * incremental Delaunay triangulation. * The four nodes at the corners will be removed and the resulting triangulation * will have a convex boundary and be Delaunay. * * \param dart * A CCW dart at the boundary of the triangulation\n * Output: A CCW dart at the new boundary * * \using * - removeBoundaryNode * * \note * - This function requires that the boundary of the triangulation is * a rectangle with four nodes (one in each corner). */ template void TriangulationHelper::removeRectangularBoundary(DartType& dart) { DartType d_next = dart; DartType d_iter; for (int i = 0; i < 4; i++) { d_iter = d_next; d_next.alpha0(); positionAtNextBoundaryEdge(d_next); removeBoundaryNode(d_iter); } dart = d_next; // Return a dart at the new boundary } //------------------------------------------------------------------------------------------------ /** Removes the node associated with \e dart and * updates the triangulation to be Delaunay. * * \using * - removeBoundaryNode if \e dart represents a node at the boundary * - removeInteriorNode if \e dart represents an interior node * * \note * - The node cannot belong to a fixed (constrained) edge that is not * swappable. (An endless loop is likely to occur in this case). */ template void TriangulationHelper::removeNode(DartType& dart) { if (isBoundaryNode(dart)) removeBoundaryNode(dart); else removeInteriorNode(dart); } //------------------------------------------------------------------------------------------------ /** Removes the boundary node associated with \e dart and * updates the triangulation to be Delaunay. * * \using * - swapEdgesAwayFromBoundaryNode * - optimizeDelaunay * * \require * - \ref hed::TTLtraits::removeBoundaryTriangle "TraitsType::removeBoundaryTriangle" (Dart&) */ template void TriangulationHelper::removeBoundaryNode(DartType& dart) { // ... and update Delaunay // - CCW dart must be given (for remove) // - No dart is delivered back now (but this is possible if // we assume that there is not only one triangle left in the triangulation. // Position at boundary edge and CCW if (!isBoundaryEdge(dart)) { dart.alpha1(); // ensures that next function delivers back a CCW dart (if the given dart is CCW) positionAtNextBoundaryEdge(dart); } std::list swapped_edges; swapEdgesAwayFromBoundaryNode(dart, swapped_edges); // Remove boundary triangles and remove the new boundary from the list // of swapped edges, see below. DartType d_iter = dart; DartType dnext = dart; bool bend = false; while (bend == false) { dnext.alpha1().alpha2(); if (isBoundaryEdge(dnext)) bend = true; // Stop when boundary // Generic: Also remove the new boundary from the list of swapped edges DartType n_bedge = d_iter; n_bedge.alpha1().alpha0().alpha1().alpha2(); // new boundary edge // ??? can we avoid find if we do this in swap away? typename std::list::iterator it; it = find(swapped_edges.begin(), swapped_edges.end(), n_bedge); if (it != swapped_edges.end()) swapped_edges.erase(it); // Remove the boundary triangle triangulation.removeBoundaryTriangle(d_iter); d_iter = dnext; } // Optimize Delaunay typedef std::list DartListType; optimizeDelaunay(swapped_edges); } //------------------------------------------------------------------------------------------------ /** Removes the interior node associated with \e dart and * updates the triangulation to be Delaunay. * * \using * - swapEdgesAwayFromInteriorNode * - optimizeDelaunay * * \require * - \ref hed::TTLtraits::reverse_splitTriangle "TraitsType::reverse_splitTriangle" (Dart&) * * \note * - The node cannot belong to a fixed (constrained) edge that is not * swappable. (An endless loop is likely to occur in this case). */ template void TriangulationHelper::removeInteriorNode(DartType& dart) { // ... and update to Delaunay. // Must allow degeneracy temporarily, see comments in swap edges away // Assumes: // - revese_splitTriangle does not affect darts // outside the resulting triangle. // 1) Swaps edges away from the node until degree=3 (generic) // 2) Removes the remaining 3 triangles and creates a new to fill the hole // unsplitTriangle which is required // 3) Runs LOP on the platelet to obtain a Delaunay triangulation // (No dart is delivered as output) // Assumes dart is counterclockwise std::list swapped_edges; swapEdgesAwayFromInteriorNode(dart, swapped_edges); // The reverse operation of split triangle: // Make one triangle of the three triangles at the node associated with dart // TraitsType:: triangulation.reverse_splitTriangle(dart); // ???? Not generic yet if we are very strict: // When calling unsplit triangle, darts at the three opposite sides may // change! // Should we hide them longer away??? This is possible since they cannot // be boundary edges. // ----> Or should we just require that they are not changed??? // Make the swapped-away edges Delaunay. // Note the theoretical result: if there are no edges in the list, // the triangulation is Delaunay already optimizeDelaunay(swapped_edges); } //@} // End of Delaunay Triangulation Group //------------------------------------------------------------------------------------------------ // -------------------------- Topological and Geometric Queries Group --------------------------- //------------------------------------------------------------------------------------------------ /** @name Topological and Geometric Queries */ //@{ //------------------------------------------------------------------------------------------------ // Private/Hidden function (might change later) template bool TriangulationHelper::isMemberOfFace(const TopologyElementType& topologyElement, const DartType& dart) { // Check if the given topology element (node, edge or face) is a member of the face // Assumes: // - DartType::isMember(TopologyElementType) DartType dart_iter = dart; do { if (dart_iter.isMember(topologyElement)) return true; dart_iter.alpha0().alpha1(); } while (dart_iter != dart); return false; } //------------------------------------------------------------------------------------------------ // Private/Hidden function (might change later) template bool TriangulationHelper::locateFaceWithNode(const NodeType& node, DartType& dart_iter) { // Locate a face in the topology structure with the given node as a member // Assumes: // - TraitsType::orient2d(DartType, DartType, NodeType) // - DartType::isMember(NodeType) // - Note that if false is returned, the node might still be in the // topology structure. Application programmer // should check all if by hypothesis the node is in the topology structure; // see doc. on locateTriangle. bool status = locateFaceSimplest(node, dart_iter); if (status == false) return status; // True was returned from locateFaceSimplest, but if the located triangle is // degenerate and the node is on the extension of the edges, // the node might still be inside. Check if node is a member and return false // if not. (Still the node might be in the topology structure, see doc. above // and in locateTriangle(const PointType& point, DartType& dart_iter) return isMemberOfFace(node, dart_iter); } //------------------------------------------------------------------------------------------------ /** Locates the face containing a given point. * It is assumed that the tessellation (e.g. a triangulation) is \e regular in the sense that * there are no holes, the boundary is convex and there are no degenerate faces. * * \param point * A point to be located * * \param dart * An arbitrary CCW dart in the triangulation\n * Output: A CCW dart in the located face * * \retval bool * \c true if a face is found; \c false if not. * * \require * - \ref hed::TTLtraits::orient2d "TraitsType::orient2d" (DartType&, DartType&, PointType&) * * \note * - If \c false is returned, \e point may still be inside a face if the tessellation is not * \e regular as explained above. * * \see * locateTriangle */ template bool TriangulationHelper::locateFaceSimplest(const PointType& point, DartType& dart) { // Not degenerate triangles if point is on the extension of the edges // But inTriangle may be called in case of true (may update to inFace2) // Convex boundary // no holes // convex faces (works for general convex faces) // Not specialized for triangles, but ok? // // TraitsType::orint2d(PointType) is the half open half-plane defined // by the dart: // n1 = dart.node() // n2 = dart.alpha0().node // Only the following gives true: // ((n2->x()-n1->x())*(point.y()-n1->y()) >= (point.x()-n1->x())*(n2->y()-n1->y())) DartType dart_start; dart_start = dart; DartType dart_prev; DartType d0; for (;;) { d0 = dart; d0.alpha0(); if (TraitsType::orient2d(dart, d0, point) >= 0) { dart.alpha0().alpha1(); if (dart == dart_start) return true; // left to all edges in face } else { dart_prev = dart; dart.alpha2(); if (dart == dart_prev) return false; // iteration to outside boundary dart_start = dart; dart_start.alpha0(); dart.alpha1(); // avoid twice on same edge and ccw in next } } } //------------------------------------------------------------------------------------------------ /** Locates the triangle containing a given point. * It is assumed that the triangulation is \e regular in the sense that there * are no holes and the boundary is convex. * This function deals with degeneracy to some extent, but round-off errors may still * lead to a wrong result if triangles are degenerate. * * \param point * A point to be located * * \param dart * An arbitrary CCW dart in the triangulation\n * Output: A CCW dart in the located triangle * * \retval bool * \c true if a triangle is found; \c false if not.\n * If \e point is outside the triangulation, in which case \c false is returned, * then the edge associated with \e dart will be at the boundary of the triangulation. * * \using * - locateFaceSimplest * - inTriangle */ template bool TriangulationHelper::locateTriangle(const PointType& point, DartType& dart) { // The purpose is to have a fast and stable procedure that // i) avoids concluding that a point is inside a triangle if it is not inside // ii) avoids infinite loops // Thus, if false is returned, the point might still be inside a triangle in // the triangulation. But this will probably only occur in the following cases: // i) There are holes in the triangulation which causes the procedure to stop. // ii) The boundary of the triangulation is not convex. // ii) There might be degenerate triangles interior to the triangulation, or on the // the boundary, which in some cases might cause the procedure to stop there due // to the logic of the algorithm. // It is the application programmer's responsibility to check further if false is // returned. For example, if by hypothesis the point is inside a triangle // in the triangulation and and false is returned, then all triangles in the // triangulation should be checked by the application. This can be done using // the function: // bool inTriangle(const PointType& point, const DartType& dart). // Assumes: // - crossProduct2d, scalarProduct2d etc., see functions called bool status = locateFaceSimplest(point, dart); if (status == false) return status; // There may be degeneracy, i.e., the point might be outside the triangle // on the extension of the edges of a degenerate triangle. // The next call returns true if inside a non-degenerate or a degenerate triangle, // but false if the point coincides with the "supernode" in the case where all // edges are degenerate. return inTriangle(point, dart); } //------------------------------------------------------------------------------------------------ /** Checks if \e point is inside the triangle associated with \e dart. * A fast and simple function that does not deal with degeneracy. * * \param dart * A CCW dart in the triangle * * \require * - \ref hed::TTLtraits::orient2d "TraitsType::orient2d" (DartType&, DartType&, PointType&) * * \see * inTriangle for a more robust function */ template bool TriangulationHelper::inTriangleSimplest(const PointType& point, const DartType& dart) { // Fast and simple: Do not deal with degenerate faces, i.e., if there is // degeneracy, true will be returned if the point is on the extension of the // edges of a degenerate triangle DartType d_iter = dart; DartType d0 = d_iter; d0.alpha0(); if (!TraitsType::orient2d(d_iter, d0, point) >= 0) return false; d_iter.alpha0().alpha1(); d0 = d_iter; d0.alpha0(); if (!TraitsType::orient2d(d_iter, d0, point) >= 0) return false; d_iter.alpha0().alpha1(); d0 = d_iter; d0.alpha0(); if (!TraitsType::orient2d(d_iter, d0, point) >= 0) return false; return true; } //------------------------------------------------------------------------------------------------ /** Checks if \e point is inside the triangle associated with \e dart. * This function deals with degeneracy to some extent, but round-off errors may still * lead to wrong result if the triangle is degenerate. * * \param dart * A CCW dart in the triangle * * \require * - \ref hed::TTLtraits::crossProduct2d "TraitsType::crossProduct2d" (DartType&, PointType&) * - \ref hed::TTLtraits::scalarProduct2d "TraitsType::scalarProduct2d" (DartType&, PointType&) * * \see * inTriangleSimplest */ template bool TriangulationHelper::inTriangle(const PointType& point, const DartType& dart) { // SHOULD WE INCLUDE A STRATEGY WITH EDGE X e_1 ETC? TO GUARANTEE THAT // ONLY ON ONE EDGE? BUT THIS DOES NOT SOLVE PROBLEMS WITH // notInE1 && notInE1.neghbour ? // Returns true if inside (but not necessarily strictly inside) // Works for degenerate triangles, but not when all edges are degenerate, // and the point coincides with all nodes; // then false is always returned. typedef typename TraitsType::real_type real_type; DartType dart_iter = dart; real_type cr1 = TraitsType::crossProduct2d(dart_iter, point); if (cr1 < 0) return false; dart_iter.alpha0().alpha1(); real_type cr2 = TraitsType::crossProduct2d(dart_iter, point); if (cr2 < 0) return false; dart_iter.alpha0().alpha1(); real_type cr3 = TraitsType::crossProduct2d(dart_iter, point); if (cr3 < 0) return false; // All cross products are >= 0 // Check for degeneracy if (cr1 != 0 || cr2 != 0 || cr3 != 0) return true; // inside non-degenerate face // All cross-products are zero, i.e. degenerate triangle, check if inside // Strategy: d.scalarProduct2d >= 0 && alpha0(d).d.scalarProduct2d >= 0 for one of // the edges. But if all edges are degenerate and the point is on (all) the nodes, // then "false is returned". DartType dart_tmp = dart_iter; real_type sc1 = TraitsType::scalarProduct2d(dart_tmp,point); real_type sc2 = TraitsType::scalarProduct2d(dart_tmp.alpha0(), point); if (sc1 >= 0 && sc2 >= 0) { // test for degenerate edge if (sc1 != 0 || sc2 != 0) return true; // interior to this edge or on a node (but see comment above) } dart_tmp = dart_iter.alpha0().alpha1(); sc1 = TraitsType::scalarProduct2d(dart_tmp,point); sc2 = TraitsType::scalarProduct2d(dart_tmp.alpha0(),point); if (sc1 >= 0 && sc2 >= 0) { // test for degenerate edge if (sc1 != 0 || sc2 != 0) return true; // interior to this edge or on a node (but see comment above) } dart_tmp = dart_iter.alpha1(); sc1 = TraitsType::scalarProduct2d(dart_tmp,point); sc2 = TraitsType::scalarProduct2d(dart_tmp.alpha0(),point); if (sc1 >= 0 && sc2 >= 0) { // test for degenerate edge if (sc1 != 0 || sc2 != 0) return true; // interior to this edge or on a node (but see comment above) } // Not on any of the edges of the degenerate triangle. // The only possibility for the point to be "inside" is that all edges are degenerate // and the point coincide with all nodes. So false is returned in this case. return false; } //------------------------------------------------------------------------------------------------ // Private/Hidden function (might change later) template void TriangulationHelper::getAdjacentTriangles(const DartType& dart, DartType& t1, DartType& t2, DartType& t3) { DartType dart_iter = dart; // add first if (dart_iter.alpha2() != dart) { t1 = dart_iter; dart_iter = dart; } // add second dart_iter.alpha0(); dart_iter.alpha1(); DartType dart_prev = dart_iter; if ((dart_iter.alpha2()) != dart_prev) { t2 = dart_iter; dart_iter = dart_prev; } // add third dart_iter.alpha0(); dart_iter.alpha1(); dart_prev = dart_iter; if ((dart_iter.alpha2()) != dart_prev) t3 = dart_iter; } //------------------------------------------------------------------------------------------------ /** Gets the boundary as sequence of darts, where the edges associated with the darts are boundary * edges, given a dart with an associating edge at the boundary of a topology structure. * The first dart in the sequence will be the given one, and the others will have the same * orientation (CCW or CW) as the first. * Assumes that the given dart is at the boundary. * * \param dart * A dart at the boundary (CCW or CW) * * \param boundary * A sequence of darts, where the associated edges are the boundary edges * * \require * - DartListType::push_back (DartType&) */ template void TriangulationHelper::getBoundary(const DartType& dart, DartListType& boundary) { // assumes the given dart is at the boundary (by edge) DartType dart_iter(dart); boundary.push_back(dart_iter); // Given dart as first element dart_iter.alpha0(); positionAtNextBoundaryEdge(dart_iter); while (dart_iter != dart) { boundary.push_back(dart_iter); dart_iter.alpha0(); positionAtNextBoundaryEdge(dart_iter); } } //------------------------------------------------------------------------------------------------ /* // Asumes a fixed point (a boundary edge) is given // template class boundary_1_Iterator { // i.e. "circulator" DartType current_; public: boundaryEdgeIterator(const DartType& dart) {current_ = dart;} DartType& operator * () const {return current_;} void operator ++ () {current_.alpha0(); positionAtNextBoundaryEdge(current_);} }; */ //------------------------------------------------------------------------------------------------ /** Checks if the edge associated with \e dart is at * the boundary of the triangulation. * * \par Implements: * \code * DartType dart_iter = dart; * if (dart_iter.alpha2() == dart) * return true; * else * return false; * \endcode */ template bool TriangulationHelper::isBoundaryEdge(const DartType& dart) { DartType dart_iter = dart; if (dart_iter.alpha2() == dart) return true; else return false; } //------------------------------------------------------------------------------------------------ /** Checks if the face associated with \e dart is at * the boundary of the triangulation. */ template bool TriangulationHelper::isBoundaryFace(const DartType& dart) { // Strategy: boundary if alpha2(d)=d DartType dart_iter(dart); DartType dart_prev; do { dart_prev = dart_iter; if (dart_iter.alpha2() == dart_prev) return true; else dart_iter = dart_prev; // back again dart_iter.alpha0(); dart_iter.alpha1(); } while (dart_iter != dart); return false; } //------------------------------------------------------------------------------------------------ /** Checks if the node associated with \e dart is at * the boundary of the triangulation. */ template bool TriangulationHelper::isBoundaryNode(const DartType& dart) { // Strategy: boundary if alpha2(d)=d DartType dart_iter(dart); DartType dart_prev; // If input dart is reached again, then internal node // If alpha2(d)=d, then boundary do { dart_iter.alpha1(); dart_prev = dart_iter; dart_iter.alpha2(); if (dart_iter == dart_prev) return true; } while (dart_iter != dart); return false; } //------------------------------------------------------------------------------------------------ /** Returns the degree of the node associated with \e dart. * * \par Definition: * The \e degree (or valency) of a node \e V in a triangulation, * is defined as the number of edges incident with \e V, i.e., * the number of edges joining \e V with another node in the triangulation. */ template int TriangulationHelper::getDegreeOfNode(const DartType& dart) { DartType dart_iter(dart); DartType dart_prev; // If input dart is reached again, then interior node // If alpha2(d)=d, then boundary int degree = 0; bool boundaryVisited = false; do { dart_iter.alpha1(); degree++; dart_prev = dart_iter; dart_iter.alpha2(); if (dart_iter == dart_prev) { if (!boundaryVisited) { boundaryVisited = true; // boundary is reached first time, count in the reversed direction degree++; // count the start since it is not done above dart_iter = dart; dart_iter.alpha2(); } else return degree; } } while (dart_iter != dart); return degree; } //------------------------------------------------------------------------------------------------ // Modification of getDegreeOfNode: // Strategy, reverse the list and start in the other direction if the boundary // is reached. NB. copying of darts but ok., or we could have collected pointers, // but the memory management. // NOTE: not symmetry if we choose to collect opposite edges // now we collect darts with radiating edges // Remember that we must also copy the node, but ok with push_back // The size of the list will be the degree of the node // No CW/CCW since topology only // Each dart consists of an incident edge and an adjacent node. // But note that this is only how we interpret the dart in this implementation. // Given this list, how can we find the opposite edges: // We can perform alpha1 on each, but for boundary nodes we will get one edge twice. // But this is will always be the last dart! // The darts in the list are in sequence and starts with the alpha0(dart) // alpha0, alpha1 and alpha2 // Private/Hidden function template void TriangulationHelper::getNeighborNodes(const DartType& dart, std::list& node_list, bool& boundary) { DartType dart_iter(dart); dart_iter.alpha0(); // position the dart at an opposite node DartType dart_prev = dart_iter; bool start_at_boundary = false; dart_iter.alpha2(); if (dart_iter == dart_prev) start_at_boundary = true; else dart_iter = dart_prev; // back again DartType dart_start = dart_iter; do { node_list.push_back(dart_iter); dart_iter.alpha1(); dart_iter.alpha0(); dart_iter.alpha1(); dart_prev = dart_iter; dart_iter.alpha2(); if (dart_iter == dart_prev) { // boundary reached boundary = true; if (start_at_boundary == true) { // add the dart which now is positioned at the opposite boundary node_list.push_back(dart_iter); return; } else { // call the function again such that we start at the boundary // first clear the list and reposition to the initial node dart_iter.alpha0(); node_list.clear(); getNeighborNodes(dart_iter, node_list, boundary); return; // after one recursive step } } } while (dart_iter != dart_start); boundary = false; } //------------------------------------------------------------------------------------------------ /** Gets the 0-orbit around an interior node. * * \param dart * A dart (CCW or CW) positioned at an \e interior node. * * \retval orbit * Sequence of darts with one orbit for each arc. All the darts have the same * orientation (CCW or CW) as \e dart, and \e dart is the first element * in the sequence. * * \require * - DartListType::push_back (DartType&) * * \see * get_0_orbit_boundary */ template void TriangulationHelper::get_0_orbit_interior(const DartType& dart, DartListType& orbit) { DartType d_iter = dart; orbit.push_back(d_iter); d_iter.alpha1().alpha2(); while (d_iter != dart) { orbit.push_back(d_iter); d_iter.alpha1().alpha2(); } } //------------------------------------------------------------------------------------------------ /** Gets the 0-orbit around a node at the boundary * * \param dart * A dart (CCW or CW) positioned at a \e boundary \e node and at a \e boundary \e edge. * * \retval orbit * Sequence of darts with one orbit for each arc. All the darts, \e exept \e the \e last one, * have the same orientation (CCW or CW) as \e dart, and \e dart is the first element * in the sequence. * * \require * - DartListType::push_back (DartType&) * * \note * - The last dart in the sequence have opposite orientation compared to the others! * * \see * get_0_orbit_interior */ template void TriangulationHelper::get_0_orbit_boundary(const DartType& dart, DartListType& orbit) { DartType dart_prev; DartType d_iter = dart; do { orbit.push_back(d_iter); d_iter.alpha1(); dart_prev = d_iter; d_iter.alpha2(); } while (d_iter != dart_prev); orbit.push_back(d_iter); // the last one with opposite orientation } //------------------------------------------------------------------------------------------------ /** Checks if the two darts belong to the same 0-orbit, i.e., * if they share a node. * \e d1 and/or \e d2 can be CCW or CW. * * (This function also examines if the the node associated with * \e d1 is at the boundary, which slows down the function (slightly). * If it is known that the node associated with \e d1 is an interior * node and a faster version is needed, the user should implement his/her * own version.) */ template bool TriangulationHelper::same_0_orbit(const DartType& d1, const DartType& d2) { // Two copies of the same dart DartType d_iter = d2; DartType d_end = d2; if (isBoundaryNode(d_iter)) { // position at both boundary edges positionAtNextBoundaryEdge(d_iter); d_end.alpha1(); positionAtNextBoundaryEdge(d_end); } for (;;) { if (d_iter == d1) return true; d_iter.alpha1(); if (d_iter == d1) return true; d_iter.alpha2(); if (d_iter == d_end) break; } return false; } //------------------------------------------------------------------------------------------------ /** Checks if the two darts belong to the same 1-orbit, i.e., * if they share an edge. * \e d1 and/or \e d2 can be CCW or CW. */ template bool TriangulationHelper::same_1_orbit(const DartType& d1, const DartType& d2) { DartType d_iter = d2; // (Also works at the boundary) if (d_iter == d1 || d_iter.alpha0() == d1 || d_iter.alpha2() == d1 || d_iter.alpha0() == d1) return true; return false; } //------------------------------------------------------------------------------------------------ /** Checks if the two darts belong to the same 2-orbit, i.e., * if they lie in the same triangle. * \e d1 and/or \e d2 can be CCW or CW */ template bool TriangulationHelper::same_2_orbit(const DartType& d1, const DartType& d2) { DartType d_iter = d2; if (d_iter == d1 || d_iter.alpha0() == d1 || d_iter.alpha1() == d1 || d_iter.alpha0() == d1 || d_iter.alpha1() == d1 || d_iter.alpha0() == d1) return true; return false; } //------------------------------------------------------------------------------------------------ // Private/Hidden function template bool TriangulationHelper::degenerateTriangle(const DartType& dart) { // Check if triangle is degenerate // Assumes CCW dart DartType d1 = dart; DartType d2 = d1; d2.alpha1(); if (TraitsType::crossProduct2d(d1,d2) == 0) return true; return false; } //------------------------------------------------------------------------------------------------ /** Checks if the edge associated with \e dart is swappable, i.e., if the edge * is a diagonal in a \e strictly convex (or convex) quadrilateral. * * \param allowDegeneracy * If set to true, the function will also return true if the numerical calculations * indicate that the quadrilateral is convex only, and not necessarily strictly * convex. * * \require * - \ref hed::TTLtraits::crossProduct2d "TraitsType::crossProduct2d" (Dart&, Dart&) */ template bool TriangulationHelper::swappableEdge(const DartType& dart, bool allowDegeneracy) { // How "safe" is it? if (isBoundaryEdge(dart)) return false; // "angles" are at the diagonal DartType d1 = dart; d1.alpha2().alpha1(); DartType d2 = dart; d2.alpha1(); if (allowDegeneracy) { if (TraitsType::crossProduct2d(d1,d2) < 0.0) return false; } else { if (TraitsType::crossProduct2d(d1,d2) <= 0.0) return false; } // Opposite side (still angle at the diagonal) d1 = dart; d1.alpha0(); d2 = d1; d1.alpha1(); d2.alpha2().alpha1(); if (allowDegeneracy) { if (TraitsType::crossProduct2d(d1,d2) < 0.0) return false; } else { if (TraitsType::crossProduct2d(d1,d2) <= 0.0) return false; } return true; } //------------------------------------------------------------------------------------------------ /** Given a \e dart, CCW or CW, positioned in a 0-orbit at the boundary of a tessellation. * Position \e dart at a boundary edge in the same 0-orbit.\n * If the given \e dart is CCW, \e dart is positioned at the left boundary edge * and will be CW.\n * If the given \e dart is CW, \e dart is positioned at the right boundary edge * and will be CCW. * * \note * - The given \e dart must have a source node at the boundary, otherwise an * infinit loop occurs. */ template void TriangulationHelper::positionAtNextBoundaryEdge(DartType& dart) { DartType dart_prev; // If alpha2(d)=d, then boundary //old convention: dart.alpha0(); do { dart.alpha1(); dart_prev = dart; dart.alpha2(); } while (dart != dart_prev); } //------------------------------------------------------------------------------------------------ /** Checks if the boundary of a triangulation is convex. * * \param dart * A CCW dart at the boundary of the triangulation * * \require * - \ref hed::TTLtraits::crossProduct2d "TraitsType::crossProduct2d" (const Dart&, const Dart&) */ template bool TriangulationHelper::convexBoundary(const DartType& dart) { std::list blist; getBoundary(dart, blist); int no; no = (int)blist.size(); typename std::list::const_iterator bit = blist.begin(); DartType d1 = *bit; ++bit; DartType d2; bool convex = true; for (; bit != blist.end(); ++bit) { d2 = *bit; double crossProd = TraitsType::crossProduct2d(d1, d2); if (crossProd < 0.0) { //cout << "!!! Boundary is NOT convex: crossProd = " << crossProd << endl; convex = false; return convex; } d1 = d2; } // Check the last angle d2 = *blist.begin(); double crossProd = TraitsType::crossProduct2d(d1, d2); if (crossProd < 0.0) { //cout << "!!! Boundary is NOT convex: crossProd = " << crossProd << endl; convex = false; } //if (convex) // cout << "\n---> Boundary is convex\n" << endl; //cout << endl; return convex; } //@} // End of Topological and Geometric Queries Group //------------------------------------------------------------------------------------------------ // ------------------------ Utilities for Delaunay Triangulation Group -------------------------- //------------------------------------------------------------------------------------------------ /** @name Utilities for Delaunay Triangulation */ //@{ //------------------------------------------------------------------------------------------------ /** Optimizes the edges in the given sequence according to the * \e Delaunay criterion, i.e., such that the edge will fullfill the * \e circumcircle criterion (or equivalently the \e MaxMin * angle criterion) with respect to the quadrilaterals where * they are diagonals. * * \param elist * The sequence of edges * * \require * - \ref hed::TTLtraits::swapEdge "TraitsType::swapEdge" (DartType& \e dart)\n * \b Note: Must be implemented such that \e dart is delivered back in a position as * seen if it was glued to the edge when swapping (rotating) the edge CCW * * \using * - swapTestDelaunay */ template void TriangulationHelper::optimizeDelaunay(DartListType& elist) { optimizeDelaunay(elist, elist.end()); } //------------------------------------------------------------------------------------------------ template void TriangulationHelper::optimizeDelaunay(DartListType& elist, const typename DartListType::iterator end) { // CCW darts // Optimize here means Delaunay, but could be any criterion by // requiring a "should swap" in the traits class, or give // a function object? // Assumes that elist has only one dart for each arc. // Darts outside the quadrilateral are preserved // For some data structures it is possible to preserve // all darts when swapping. Thus a preserve_darts_when swapping // ccould be given to indicate this and we would gain performance by avoiding // find in list. // Requires that swap retuns a dart in the "same position when rotated CCW" // (A vector instead of a list may be better.) // First check that elist is not empty if (elist.empty()) return; // Avoid cycling by more extensive circumcircle test bool cycling_check = true; bool optimal = false; typename DartListType::iterator it; typename DartListType::iterator end_opt = end; // Hmm... The following code is trying to derefence an iterator that may // be invalid. This may lead to debug error on Windows, so we comment out // this code. Checking elist.empty() above will prevent some // problems... // // last_opt is passed the end of the "active list" //typename DartListType::iterator end_opt; //if (*end != NULL) // end_opt = end; //else // end_opt = elist.end(); while(!optimal) { optimal = true; for (it = elist.begin(); it != end_opt; ++it) { if (swapTestDelaunay(*it, cycling_check)) { // Preserve darts. Potential darts in the list are: // - The current dart // - the four CCW darts on the boundary of the quadrilateral // (the current arc has only one dart) swapEdgeInList(it, elist); optimal = false; } // end if should swap } // end for } // end pass } //------------------------------------------------------------------------------------------------ /** Checks if the edge associated with \e dart should be swapped according * to the \e Delaunay criterion, i.e., the \e circumcircle criterion (or * equivalently the \e MaxMin angle criterion). * * \param cycling_check * Must be set to \c true when used in connection with optimization algorithms, * e.g., optimizeDelaunay. This will avoid cycling and infinite loops in nearly * neutral cases. * * \require * - \ref hed::TTLtraits::scalarProduct2d "TraitsType::scalarProduct2d" (DartType&, DartType&) * - \ref hed::TTLtraits::crossProduct2d "TraitsType::crossProduct2d" (DartType&, DartType&) */ template #if ((_MSC_VER > 0) && (_MSC_VER < 1300))//#ifdef _MSC_VER bool TriangulationHelper::swapTestDelaunay(const DartType& dart, bool cycling_check = false) const { #else bool TriangulationHelper::swapTestDelaunay(const DartType& dart, bool cycling_check) const { #endif // The general strategy is taken from Cline & Renka. They claim that // their algorithm insure numerical stability, but experiments show // that this is not correct for neutral, or almost neutral cases. // I have extended this strategy (without using tolerances) to avoid // cycling and infinit loops when used in connection with LOP algorithms; // see the comments below. typedef typename TraitsType::real_type real_type; if (isBoundaryEdge(dart)) return false; DartType v11 = dart; v11.alpha1().alpha0(); DartType v12 = v11; v12.alpha1(); DartType v22 = dart; v22.alpha2().alpha1().alpha0(); DartType v21 = v22; v21.alpha1(); real_type cos1 = TraitsType::scalarProduct2d(v11,v12); real_type cos2 = TraitsType::scalarProduct2d(v21,v22); // "Angles" are opposite to the diagonal. // The diagonals should be swapped iff (t1+t2) .gt. 180 // degrees. The following two tests insure numerical // stability according to Cline & Renka. But experiments show // that cycling may still happen; see the aditional test below. if (cos1 >= 0 && cos2 >= 0) // both angles are grater or equual 90 return false; if (cos1 < 0 && cos2 < 0) // both angles are less than 90 return true; real_type sin1 = TraitsType::crossProduct2d(v11,v12); real_type sin2 = TraitsType::crossProduct2d(v21,v22); real_type sin12 = sin1*cos2 + cos1*sin2; if (sin12 >= 0) // equality represents a neutral case return false; if (cycling_check) { // situation so far is sin12 < 0. Test if this also // happens for the swapped edge. // The numerical calculations so far indicate that the edge is // not Delaunay and should not be swapped. But experiments show that // in neutral cases, or almost neutral cases, it may happen that // the swapped edge may again be found to be not Delaunay and thus // be swapped if we return true here. This may lead to cycling and // an infinte loop when used, e.g., in connection with optimizeDelaunay. // // In an attempt to avoid this we test if the swapped edge will // also be found to be not Delaunay by repeating the last test above // for the swapped edge. // We now rely on the general requirement for TraitsType::swapEdge which // should deliver CCW dart back in "the same position"; see the general // description. This will insure numerical stability as the next calculation // is the same as if this function was called again with the swapped edge. // Cycling is thus impossible provided that the initial tests above does // not result in ambiguity (and they should probably not do so). v11.alpha0(); v12.alpha0(); v21.alpha0(); v22.alpha0(); // as if the edge was swapped/rotated CCW cos1 = TraitsType::scalarProduct2d(v22,v11); cos2 = TraitsType::scalarProduct2d(v12,v21); sin1 = TraitsType::crossProduct2d(v22,v11); sin2 = TraitsType::crossProduct2d(v12,v21); sin12 = sin1*cos2 + cos1*sin2; if (sin12 < 0) { // A neutral case, but the tests above lead to swapping return false; } } return true; } //----------------------------------------------------------------------- // // x //" / \ " // / | \ Darts: //oe2 / | \ oe2 = oppEdge2 // x....|....x // \ d| d/ d = diagonal (input and output) // \ | / // oe1 \ / oe1 = oppEdge1 // x // //----------------------------------------------------------------------- /** Recursively swaps edges in the triangulation according to the \e Delaunay criterion. * * \param diagonal * A CCW dart representing the edge where the recursion starts from. * * \require * - \ref hed::TTLtraits::swapEdge "TraitsType::swapEdge" (DartType&)\n * \b Note: Must be implemented such that the darts outside the quadrilateral * are not affected by the swap. * * \using * - Calls itself recursively */ template void TriangulationHelper::recSwapDelaunay(DartType& diagonal) { if (!swapTestDelaunay(diagonal)) // ??? swapTestDelaunay also checks if boundary, so this can be optimized return; // Get the other "edges" of the current triangle; see illustration above. DartType oppEdge1 = diagonal; oppEdge1.alpha1(); bool b1; if (isBoundaryEdge(oppEdge1)) b1 = true; else { b1 = false; oppEdge1.alpha2(); } DartType oppEdge2 = diagonal; oppEdge2.alpha0().alpha1().alpha0(); bool b2; if (isBoundaryEdge(oppEdge2)) b2 = true; else { b2 = false; oppEdge2.alpha2(); } // Swap the given diagonal triangulation.swapEdge(diagonal); if (!b1) recSwapDelaunay(oppEdge1); if (!b2) recSwapDelaunay(oppEdge2); } //------------------------------------------------------------------------------------------------ /** Swaps edges away from the (interior) node associated with * \e dart such that that exactly three edges remain incident * with the node. * This function is used as a first step in removeInteriorNode * * \retval dart * A CCW dart incident with the node * * \par Assumes: * - The node associated with \e dart is interior to the * triangulation. * * \require * - \ref hed::TTLtraits::swapEdge "TraitsType::swapEdge" (DartType& \e dart)\n * \b Note: Must be implemented such that \e dart is delivered back in a position as * seen if it was glued to the edge when swapping (rotating) the edge CCW * * \note * - A degenerate triangle may be left at the node. * - The function is not unique as it depends on which dart * at the node that is given as input. * * \see * swapEdgesAwayFromBoundaryNode */ template void TriangulationHelper::swapEdgesAwayFromInteriorNode(DartType& dart, ListType& swapped_edges) { // Same iteration as in fixEdgesAtCorner, but not boundary DartType dnext = dart; // Allow degeneracy, otherwise we might end up with degree=4. // For example, the reverse operation of inserting a point on an // existing edge gives a situation where all edges are non-swappable. // Ideally, degeneracy in this case should be along the actual node, // but there is no strategy for this now. // ??? An alternative here is to wait with degeneracy till we get an // infinite loop with degree > 3. bool allowDegeneracy = true; int degree = getDegreeOfNode(dart); DartType d_iter; while (degree > 3) { d_iter = dnext; dnext.alpha1().alpha2(); if (swappableEdge(d_iter, allowDegeneracy)) { triangulation.swapEdge(d_iter); // swap the edge away // Collect swapped edges in the list // "Hide" the dart on the other side of the edge to avoid it being changed for // other swaps DartType swapped_edge = d_iter; // it was delivered back swapped_edge.alpha2().alpha0(); // CCW (if not at boundary) swapped_edges.push_back(swapped_edge); degree--; } } // Output, incident to the node dart = dnext; } //------------------------------------------------------------------------------------------------ /** Swaps edges away from the (boundary) node associated with * \e dart in such a way that when removing the edges that remain incident * with the node, the boundary of the triangulation will be convex. * This function is used as a first step in removeBoundaryNode * * \retval dart * A CCW dart incident with the node * * \require * - \ref hed::TTLtraits::swapEdge "TraitsType::swapEdge" (DartType& \e dart)\n * \b Note: Must be implemented such that \e dart is delivered back in a position as * seen if it was glued to the edge when swapping (rotating) the edge CCW * * \par Assumes: * - The node associated with \e dart is at the boundary of the triangulation. * * \see * swapEdgesAwayFromInteriorNode */ template void TriangulationHelper::swapEdgesAwayFromBoundaryNode(DartType& dart, ListType& swapped_edges) { // All darts that are swappable. // To treat collinear nodes at an existing boundary, we must allow degeneracy // when swapping to the boundary. // dart is CCW and at the boundary. // The 0-orbit runs CCW // Deliver the dart back in the "same position". // Assume for the swap in the traits class: // - A dart on the swapped edge is delivered back in a position as // seen if it was glued to the edge when swapping (rotating) the edge CCW //int degree = getDegreeOfNode(dart); passes: // Swap swappable edges that radiate from the node away DartType d_iter = dart; // ???? can simply use dart d_iter.alpha1().alpha2(); // first not at boundary DartType d_next = d_iter; bool bend = false; bool swapped_next_to_boundary = false; bool swapped_in_pass = false; bool allowDegeneracy; // = true; DartType tmp1, tmp2; while (!bend) { d_next.alpha1().alpha2(); if (isBoundaryEdge(d_next)) bend = true; // then it is CW since alpha2 // To allow removing among collinear nodes at the boundary, // degenerate triangles must be allowed // (they will be removed when used in connection with removeBoundaryNode) tmp1 = d_iter; tmp1.alpha1(); tmp2 = d_iter; tmp2.alpha2().alpha1(); // don't bother with boundary (checked later) if (isBoundaryEdge(tmp1) && isBoundaryEdge(tmp2)) allowDegeneracy = true; else allowDegeneracy = false; if (swappableEdge(d_iter, allowDegeneracy)) { triangulation.swapEdge(d_iter); // Collect swapped edges in the list // "Hide" the dart on the other side of the edge to avoid it being changed for // other swapps DartType swapped_edge = d_iter; // it was delivered back swapped_edge.alpha2().alpha0(); // CCW swapped_edges.push_back(swapped_edge); //degree--; // if degree is 2, or bend=true, we are done swapped_in_pass = true; if (bend) swapped_next_to_boundary = true; } if (!bend) d_iter = d_next; } // Deliver a dart as output in the same position as the incoming dart if (swapped_next_to_boundary) { // Assume that "swapping is CCW and dart is preserved in the same position d_iter.alpha1().alpha0().alpha1(); // CW and see below } else { d_iter.alpha1(); // CW and see below } positionAtNextBoundaryEdge(d_iter); // CCW dart = d_iter; // for next pass or output // If a dart was swapped in this iteration we must run it more if (swapped_in_pass) goto passes; } //------------------------------------------------------------------------------------------------ /** Swap the the edge associated with iterator \e it and update affected darts * in \e elist accordingly. * The darts affected by the swap are those in the same quadrilateral. * Thus, if one want to preserve one or more of these darts on should * keep them in \e elist. */ template void TriangulationHelper::swapEdgeInList(const typename DartListType::iterator& it, DartListType& elist) { typename DartListType::iterator it1, it2, it3, it4; DartType dart(*it); //typename TraitsType::DartType d1 = dart; d1.alpha2().alpha1(); //typename TraitsType::DartType d2 = d1; d2.alpha0().alpha1(); //typename TraitsType::DartType d3 = dart; d3.alpha0().alpha1(); //typename TraitsType::DartType d4 = d3; d4.alpha0().alpha1(); DartType d1 = dart; d1.alpha2().alpha1(); DartType d2 = d1; d2.alpha0().alpha1(); DartType d3 = dart; d3.alpha0().alpha1(); DartType d4 = d3; d4.alpha0().alpha1(); // Find pinters to the darts that may change. // ??? Note, this is not very efficient since we must use find, which is O(N), // four times. // - Solution?: replace elist with a vector of pair (dart,number) // and avoid find? // - make a function for swapping generically? // - sould we use another container type or, // - erase them and reinsert? // - or use two lists? it1 = find(elist.begin(), elist.end(), d1); it2 = find(elist.begin(), elist.end(), d2); it3 = find(elist.begin(), elist.end(), d3); it4 = find(elist.begin(), elist.end(), d4); triangulation.swapEdge(dart); // Update the current dart which may have changed *it = dart; // Update darts that may have changed again (if they were present) // Note that dart is delivered back after swapping if (it1 != elist.end()) { d1 = dart; d1.alpha1().alpha0(); *it1 = d1; } if (it2 != elist.end()) { d2 = dart; d2.alpha2().alpha1(); *it2 = d2; } if (it3 != elist.end()) { d3 = dart; d3.alpha2().alpha1().alpha0().alpha1(); *it3 = d3; } if (it4 != elist.end()) { d4 = dart; d4.alpha0().alpha1(); *it4 = d4; } } //@} // End of Utilities for Delaunay Triangulation Group }; // End of ttl namespace scope (but other files may also contain functions for ttl) #endif // _TTL_H_