/******************************************************************************* * * * Author : Angus Johnson * * Version : 6.4.2 * * Date : 27 February 2017 * * Website : http://www.angusj.com * * Copyright : Angus Johnson 2010-2017 * * * * License: * * Use, modification & distribution is subject to Boost Software License Ver 1. * * http://www.boost.org/LICENSE_1_0.txt * * * * Attributions: * * The code in this library is an extension of Bala Vatti's clipping algorithm: * * "A generic solution to polygon clipping" * * Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. * * http://portal.acm.org/citation.cfm?id=129906 * * * * Computer graphics and geometric modeling: implementation and algorithms * * By Max K. Agoston * * Springer; 1 edition (January 4, 2005) * * http://books.google.com/books?q=vatti+clipping+agoston * * * * See also: * * "Polygon Offsetting by Computing Winding Numbers" * * Paper no. DETC2005-85513 pp. 565-575 * * ASME 2005 International Design Engineering Technical Conferences * * and Computers and Information in Engineering Conference (IDETC/CIE2005) * * September 24-28, 2005 , Long Beach, California, USA * * http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf * * * *******************************************************************************/ #ifndef clipper_hpp #define clipper_hpp #define CLIPPER_VERSION "6.4.2" // use_int32: When enabled 32bit ints are used instead of 64bit ints. This // improve performance but coordinate values are limited to the range +/- 46340 // #define use_int32 // use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance. // #define use_xyz // use_lines: Enables line clipping. Adds a very minor cost to performance. #define use_lines // use_deprecated: Enables temporary support for the obsolete functions // #define use_deprecated #include <vector> #include <list> #include <set> #include <stdexcept> #include <cstring> #include <cstdlib> #include <ostream> #include <functional> #include <queue> namespace ClipperLib { enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor }; enum PolyType { ptSubject, ptClip }; // By far the most widely used winding rules for polygon filling are // EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32) // Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL) // see http://glprogramming.com/red/chapter11.html enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative }; #ifdef use_int32 typedef int cInt; static cInt const loRange = 0x7FFF; static cInt const hiRange = 0x7FFF; #else typedef signed long long cInt; static cInt const loRange = 0x3FFFFFFF; static cInt const hiRange = 0x3FFFFFFFFFFFFFFFLL; typedef signed long long long64; // used by Int128 class typedef unsigned long long ulong64; #endif struct IntPoint { cInt X; cInt Y; #ifdef use_xyz cInt Z; IntPoint( cInt x = 0, cInt y = 0, cInt z = 0 ) : X( x ), Y( y ), Z( z ) {}; #else IntPoint( cInt x = 0, cInt y = 0 ) : X( x ), Y( y ) {}; #endif friend inline bool operator==( const IntPoint& a, const IntPoint& b ) { return a.X == b.X && a.Y == b.Y; } friend inline bool operator!=( const IntPoint& a, const IntPoint& b ) { return a.X != b.X || a.Y != b.Y; } }; // ------------------------------------------------------------------------------ typedef std::vector<IntPoint> Path; typedef std::vector<Path> Paths; inline Path& operator <<( Path& poly, const IntPoint& p ) { poly.push_back( p ); return poly; } inline Paths& operator <<( Paths& polys, const Path& p ) { polys.push_back( p ); return polys; } std::ostream& operator <<( std::ostream& s, const IntPoint& p ); std::ostream& operator <<( std::ostream& s, const Path& p ); std::ostream& operator <<( std::ostream& s, const Paths& p ); struct DoublePoint { double X; double Y; DoublePoint( double x = 0, double y = 0 ) : X( x ), Y( y ) {} DoublePoint( IntPoint ip ) : X( (double) ip.X ), Y( (double) ip.Y ) {} }; // ------------------------------------------------------------------------------ #ifdef use_xyz typedef void (* ZFillCallback)( IntPoint& e1bot, IntPoint& e1top, IntPoint& e2bot, IntPoint& e2top, IntPoint& pt ); #endif enum InitOptions { ioReverseSolution = 1, ioStrictlySimple = 2, ioPreserveCollinear = 4 }; enum JoinType { jtSquare, jtRound, jtMiter }; enum EndType { etClosedPolygon, etClosedLine, etOpenButt, etOpenSquare, etOpenRound }; class PolyNode; typedef std::vector<PolyNode*> PolyNodes; class PolyNode { public: PolyNode(); virtual ~PolyNode() {}; Path Contour; PolyNodes Childs; PolyNode* Parent; PolyNode* GetNext() const; bool IsHole() const; bool IsOpen() const; int ChildCount() const; private: // PolyNode& operator =(PolyNode& other); unsigned Index; // node index in Parent.Childs bool m_IsOpen; JoinType m_jointype; EndType m_endtype; PolyNode* GetNextSiblingUp() const; void AddChild( PolyNode& child ); friend class Clipper; // to access Index friend class ClipperOffset; }; class PolyTree : public PolyNode { public: ~PolyTree() { Clear(); }; PolyNode* GetFirst() const; void Clear(); int Total() const; private: // PolyTree& operator =(PolyTree& other); PolyNodes AllNodes; friend class Clipper; // to access AllNodes }; bool Orientation( const Path& poly ); double Area( const Path& poly ); int PointInPolygon( const IntPoint& pt, const Path& path ); void SimplifyPolygon( const Path& in_poly, Paths& out_polys, PolyFillType fillType = pftEvenOdd ); void SimplifyPolygons( const Paths& in_polys, Paths& out_polys, PolyFillType fillType = pftEvenOdd ); void SimplifyPolygons( Paths& polys, PolyFillType fillType = pftEvenOdd ); void CleanPolygon( const Path& in_poly, Path& out_poly, double distance = 1.415 ); void CleanPolygon( Path& poly, double distance = 1.415 ); void CleanPolygons( const Paths& in_polys, Paths& out_polys, double distance = 1.415 ); void CleanPolygons( Paths& polys, double distance = 1.415 ); void MinkowskiSum( const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed ); void MinkowskiSum( const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed ); void MinkowskiDiff( const Path& poly1, const Path& poly2, Paths& solution ); void PolyTreeToPaths( const PolyTree& polytree, Paths& paths ); void ClosedPathsFromPolyTree( const PolyTree& polytree, Paths& paths ); void OpenPathsFromPolyTree( PolyTree& polytree, Paths& paths ); void ReversePath( Path& p ); void ReversePaths( Paths& p ); struct IntRect { cInt left; cInt top; cInt right; cInt bottom; }; // enums that are used internally ... enum EdgeSide { esLeft = 1, esRight = 2 }; // forward declarations (for stuff used internally) ... struct TEdge; struct IntersectNode; struct LocalMinimum; struct OutPt; struct OutRec; struct Join; typedef std::vector <OutRec*> PolyOutList; typedef std::vector <TEdge*> EdgeList; typedef std::vector <Join*> JoinList; typedef std::vector <IntersectNode*> IntersectList; // ------------------------------------------------------------------------------ // ClipperBase is the ancestor to the Clipper class. It should not be // instantiated directly. This class simply abstracts the conversion of sets of // polygon coordinates into edge objects that are stored in a LocalMinima list. class ClipperBase { public: ClipperBase(); virtual ~ClipperBase(); virtual bool AddPath( const Path& pg, PolyType PolyTyp, bool Closed ); bool AddPaths( const Paths& ppg, PolyType PolyTyp, bool Closed ); virtual void Clear(); IntRect GetBounds(); bool PreserveCollinear() { return m_PreserveCollinear; }; void PreserveCollinear( bool value ) { m_PreserveCollinear = value; }; protected: void DisposeLocalMinimaList(); TEdge* AddBoundsToLML( TEdge* e, bool IsClosed ); virtual void Reset(); TEdge* ProcessBound( TEdge* E, bool IsClockwise ); void InsertScanbeam( const cInt Y ); bool PopScanbeam( cInt& Y ); bool LocalMinimaPending(); bool PopLocalMinima( cInt Y, const LocalMinimum*& locMin ); OutRec* CreateOutRec(); void DisposeAllOutRecs(); void DisposeOutRec( PolyOutList::size_type index ); void SwapPositionsInAEL( TEdge* edge1, TEdge* edge2 ); void DeleteFromAEL( TEdge* e ); void UpdateEdgeIntoAEL( TEdge*& e ); typedef std::vector<LocalMinimum> MinimaList; MinimaList::iterator m_CurrentLM; MinimaList m_MinimaList; bool m_UseFullRange; EdgeList m_edges; bool m_PreserveCollinear; bool m_HasOpenPaths; PolyOutList m_PolyOuts; TEdge* m_ActiveEdges; typedef std::priority_queue<cInt> ScanbeamList; ScanbeamList m_Scanbeam; }; // ------------------------------------------------------------------------------ class Clipper : public virtual ClipperBase { public: Clipper( int initOptions = 0 ); bool Execute( ClipType clipType, Paths& solution, PolyFillType fillType = pftEvenOdd ); bool Execute( ClipType clipType, Paths& solution, PolyFillType subjFillType, PolyFillType clipFillType ); bool Execute( ClipType clipType, PolyTree& polytree, PolyFillType fillType = pftEvenOdd ); bool Execute( ClipType clipType, PolyTree& polytree, PolyFillType subjFillType, PolyFillType clipFillType ); bool ReverseSolution() { return m_ReverseOutput; }; void ReverseSolution( bool value ) { m_ReverseOutput = value; }; bool StrictlySimple() { return m_StrictSimple; }; void StrictlySimple( bool value ) { m_StrictSimple = value; }; // set the callback function for z value filling on intersections (otherwise Z is 0) #ifdef use_xyz void ZFillFunction( ZFillCallback zFillFunc ); #endif protected: virtual bool ExecuteInternal(); private: JoinList m_Joins; JoinList m_GhostJoins; IntersectList m_IntersectList; ClipType m_ClipType; typedef std::list<cInt> MaximaList; MaximaList m_Maxima; TEdge* m_SortedEdges; bool m_ExecuteLocked; PolyFillType m_ClipFillType; PolyFillType m_SubjFillType; bool m_ReverseOutput; bool m_UsingPolyTree; bool m_StrictSimple; #ifdef use_xyz ZFillCallback m_ZFill; // custom callback #endif void SetWindingCount( TEdge& edge ); bool IsEvenOddFillType( const TEdge& edge ) const; bool IsEvenOddAltFillType( const TEdge& edge ) const; void InsertLocalMinimaIntoAEL( const cInt botY ); void InsertEdgeIntoAEL( TEdge* edge, TEdge* startEdge ); void AddEdgeToSEL( TEdge* edge ); bool PopEdgeFromSEL( TEdge*& edge ); void CopyAELToSEL(); void DeleteFromSEL( TEdge* e ); void SwapPositionsInSEL( TEdge* edge1, TEdge* edge2 ); bool IsContributing( const TEdge& edge ) const; bool IsTopHorz( const cInt XPos ); void DoMaxima( TEdge* e ); void ProcessHorizontals(); void ProcessHorizontal( TEdge* horzEdge ); void AddLocalMaxPoly( TEdge* e1, TEdge* e2, const IntPoint& pt ); OutPt* AddLocalMinPoly( TEdge* e1, TEdge* e2, const IntPoint& pt ); OutRec* GetOutRec( int idx ); void AppendPolygon( TEdge* e1, TEdge* e2 ); void IntersectEdges( TEdge* e1, TEdge* e2, IntPoint& pt ); OutPt* AddOutPt( TEdge* e, const IntPoint& pt ); OutPt* GetLastOutPt( TEdge* e ); bool ProcessIntersections( const cInt topY ); void BuildIntersectList( const cInt topY ); void ProcessIntersectList(); void ProcessEdgesAtTopOfScanbeam( const cInt topY ); void BuildResult( Paths& polys ); void BuildResult2( PolyTree& polytree ); void SetHoleState( TEdge* e, OutRec* outrec ); void DisposeIntersectNodes(); bool FixupIntersectionOrder(); void FixupOutPolygon( OutRec& outrec ); void FixupOutPolyline( OutRec& outrec ); bool IsHole( TEdge* e ); bool FindOwnerFromSplitRecs( OutRec& outRec, OutRec*& currOrfl ); void FixHoleLinkage( OutRec& outrec ); void AddJoin( OutPt* op1, OutPt* op2, const IntPoint offPt ); void ClearJoins(); void ClearGhostJoins(); void AddGhostJoin( OutPt* op, const IntPoint offPt ); bool JoinPoints( Join* j, OutRec* outRec1, OutRec* outRec2 ); void JoinCommonEdges(); void DoSimplePolygons(); void FixupFirstLefts1( OutRec* OldOutRec, OutRec* NewOutRec ); void FixupFirstLefts2( OutRec* InnerOutRec, OutRec* OuterOutRec ); void FixupFirstLefts3( OutRec* OldOutRec, OutRec* NewOutRec ); #ifdef use_xyz void SetZ( IntPoint& pt, TEdge& e1, TEdge& e2 ); #endif }; // ------------------------------------------------------------------------------ class ClipperOffset { public: ClipperOffset( double miterLimit = 2.0, double roundPrecision = 0.25 ); ~ClipperOffset(); void AddPath( const Path& path, JoinType joinType, EndType endType ); void AddPaths( const Paths& paths, JoinType joinType, EndType endType ); void Execute( Paths& solution, double delta ); void Execute( PolyTree& solution, double delta ); void Clear(); double MiterLimit; double ArcTolerance; private: Paths m_destPolys; Path m_srcPoly; Path m_destPoly; std::vector<DoublePoint> m_normals; double m_delta, m_sinA, m_sin, m_cos; double m_miterLim, m_StepsPerRad; IntPoint m_lowest; PolyNode m_polyNodes; void FixOrientations(); void DoOffset( double delta ); void OffsetPoint( int j, int& k, JoinType jointype ); void DoSquare( int j, int k ); void DoMiter( int j, int k, double r ); void DoRound( int j, int k ); }; // ------------------------------------------------------------------------------ class clipperException : public std::exception { public: clipperException( const char* description ) : m_descr( description ) {} virtual ~clipperException() throw() {} virtual const char* what() const throw()override { return m_descr.c_str(); } private: std::string m_descr; }; // ------------------------------------------------------------------------------ } // ClipperLib namespace #endif // clipper_hpp