kicad/pcbnew/router/pns_item.cpp

330 lines
11 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2014 CERN
* Copyright (C) 2016-2023 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "pns_node.h"
#include "pns_item.h"
#include "pns_line.h"
#include "pns_router.h"
#include <geometry/shape_compound.h>
#include <geometry/shape_poly_set.h>
typedef VECTOR2I::extended_type ecoord;
namespace PNS {
static void dumpObstacles( const PNS::NODE::OBSTACLES &obstacles )
{
printf( "&&&& %zu obstacles: \n", obstacles.size() );
for( const auto& obs : obstacles )
{
printf( "%p [%s] - %p [%s], clearance %d\n",
obs.m_head, obs.m_head->KindStr().c_str(),
obs.m_item, obs.m_item->KindStr().c_str(),
obs.m_clearance );
}
}
// prune self-collisions, i.e. a via/pad annular ring with its own hole
static bool shouldWeConsiderHoleCollisions( const ITEM* aItem, const ITEM* aHead )
{
const HOLE* holeI = aItem->OfKind( ITEM::HOLE_T ) ? static_cast<const HOLE*>( aItem ) : nullptr;
const HOLE* holeH = aHead->OfKind( ITEM::HOLE_T ) ? static_cast<const HOLE*>( aHead ) : nullptr;
if( holeI && holeH ) // hole-to-hole case
{
const ITEM* parentI = holeI->ParentPadVia();
const ITEM* parentH = holeH->ParentPadVia();
if( !parentH || !parentI )
return true;
const VIA* parentViaI = dyn_cast<const VIA*>( parentI );
const VIA* parentViaH = dyn_cast<const VIA*>( parentH );
// Note to self: the if() below is an ugly heuristic to determine if we aren't trying
// to check for collisions of the hole of the via with another (although identical)
// copy of it. Such case occurs when checking a LINE against a NODE where this LINE
// has been already added. LINE has no notion of ownership of it's via (it's just a
// copy) and before hole-to-hole clearance support has been introduced it didn't matter
// becasue we didn't consider collisions of the objects belonging to the same net anyway
// Now that hole clearance check doesn't care about the nets assigned to the parent
// vias/solids, I'll probably have to refactor the LINE class to manage ownership of
// its (optional) VIA. For the moment, we just treat via holes that are geometrically
// identical and belonging to the same net as non-colliding.
if( parentViaI && parentViaH && parentViaI->Pos() == parentViaH->Pos()
&& parentViaI->Diameter() == parentViaH->Diameter()
&& parentViaI->Net() == parentViaH->Net()
&& parentViaI->Drill() == parentViaH->Drill() )
return false;
return parentI != parentH;
}
if( holeI )
return holeI->ParentPadVia() != aHead;
else if( holeH )
return holeH->ParentPadVia() != aItem;
else
return true;
}
bool ITEM::collideSimple( const ITEM* aHead, const NODE* aNode,
COLLISION_SEARCH_CONTEXT* aCtx ) const
{
// Note: if 'this' is a pad or a via then its hole is a separate PNS::ITEM in the node's
// index and we don't need to deal with holeI here. The same is *not* true of the routing
// "head", so we do need to handle holeH.
const SHAPE* shapeI = Shape();
int lineWidthI = 0;
const SHAPE* shapeH = aHead->Shape();
const HOLE* holeH = aHead->Hole();
int lineWidthH = 0;
bool collisionsFound = false;
if( this == aHead ) // we cannot be self-colliding
return false;
if ( !shouldWeConsiderHoleCollisions( this, aHead ) )
return false;
// Special cases for "head" lines with vias attached at the end. Note that this does not
// support head-line-via to head-line-via collisions, but you can't route two independent
// tracks at once so it shouldn't come up.
if( const auto line = dyn_cast<const LINE*>( this ) )
{
if( line->EndsWithVia() )
collisionsFound |= line->Via().collideSimple( aHead, aNode, aCtx );
}
if( const auto line = dyn_cast<const LINE*>( aHead ) )
{
if( line->EndsWithVia() )
collisionsFound |= line->Via().collideSimple( this, aNode, aCtx );
}
// And a special case for the "head" via's hole.
if( holeH && shouldWeConsiderHoleCollisions( this, holeH ) )
{
if( collideSimple( holeH, aNode, aCtx ) )
collisionsFound = true;
}
// Sadly collision routines ignore SHAPE_POLY_LINE widths so we have to pass them in as part
// of the clearance value.
if( m_kind == LINE_T )
lineWidthI = static_cast<const LINE*>( this )->Width() / 2;
if( aHead->m_kind == LINE_T )
lineWidthH = static_cast<const LINE*>( aHead )->Width() / 2;
// check if we are not on completely different layers first
if( !m_layers.Overlaps( aHead->m_layers ) )
return false;
// fixme: this f***ing singleton must go...
ROUTER* router = ROUTER::GetInstance();
ROUTER_IFACE* iface = router ? router->GetInterface() : nullptr;
bool differentNetsOnly = true;
bool enforce = false;
int clearance;
if( aCtx )
differentNetsOnly = aCtx->options.m_differentNetsOnly;
// Hole-to-hole collisions don't have anything to do with nets
if( Kind() == HOLE_T && aHead->Kind() == HOLE_T )
differentNetsOnly = false;
if( differentNetsOnly && Net() == aHead->Net() && aHead->Net() )
{
// same nets? no clearance!
clearance = -1;
}
else if( differentNetsOnly && ( IsFreePad() || aHead->IsFreePad() ) )
{
// a pad associated with a "free" pin (NIC) doesn't have a net until it has been used
clearance = -1;
}
else if( aNode->GetRuleResolver()->IsKeepout( this, aHead, &enforce ) )
{
if( enforce )
clearance = 0; // keepouts are exact boundary; no clearance
else
clearance = -1;
}
else if( iface && !iface->IsFlashedOnLayer( this, aHead->Layers() ) )
{
clearance = -1;
}
else if( iface && !iface->IsFlashedOnLayer( aHead, Layers() ) )
{
clearance = -1;
}
else if( aCtx && aCtx->options.m_overrideClearance >= 0 )
{
clearance = aCtx->options.m_overrideClearance;
}
else
{
clearance = aNode->GetClearance( this, aHead, aCtx ? aCtx->options.m_useClearanceEpsilon
: false );
}
if( clearance >= 0 )
{
// Note: we can't do castellation or net-tie processing in GetClearance() because they
// depend on *where* the collision is.
bool checkCastellation = ( m_parent && m_parent->GetLayer() == Edge_Cuts )
|| aNode->GetRuleResolver()->IsNonPlatedSlot( this );
bool checkNetTie = aNode->GetRuleResolver()->IsInNetTie( this );
if( checkCastellation || checkNetTie )
{
// Slow method
int actual;
VECTOR2I pos;
// The extra "1" here is to account for the fact that the hulls are built to exactly
// the clearance distance, so we need to allow for no collision when exactly at the
// clearance distance.
if( shapeH->Collide( shapeI, clearance + lineWidthH + lineWidthI - 1, &actual, &pos ) )
{
if( checkCastellation && aNode->QueryEdgeExclusions( pos ) )
return false;
if( checkNetTie && aNode->GetRuleResolver()->IsNetTieExclusion( aHead, pos, this ) )
return false;
if( aCtx )
{
collisionsFound = true;
OBSTACLE obs;
obs.m_head = const_cast<ITEM*>( aHead );
obs.m_item = const_cast<ITEM*>( this );
obs.m_clearance = clearance;
obs.m_distFirst = 0;
obs.m_maxFanoutWidth = 0;
aCtx->obstacles.insert( obs );
}
else
{
return true;
}
}
}
else
{
// Fast method
// The extra "1" here is to account for the fact that the hulls are built to exactly
// the clearance distance, so we need to allow for no collision when exactly at the
// clearance distance.
if( shapeH->Collide( shapeI, clearance + lineWidthH + lineWidthI - 1 ) )
{
if( aCtx )
{
collisionsFound = true;
OBSTACLE obs;
obs.m_head = const_cast<ITEM*>( aHead );
obs.m_item = const_cast<ITEM*>( this );
obs.m_clearance = clearance;
obs.m_distFirst = 0;
obs.m_maxFanoutWidth = 0;
aCtx->obstacles.insert( obs );
}
else
{
return true;
}
}
}
}
return collisionsFound;
}
bool ITEM::Collide( const ITEM* aOther, const NODE* aNode, COLLISION_SEARCH_CONTEXT *aCtx ) const
{
if( collideSimple( aOther, aNode, aCtx ) )
return true;
return false;
}
std::string ITEM::KindStr() const
{
switch( m_kind )
{
case ARC_T: return "arc";
case LINE_T: return "line";
case SEGMENT_T: return "segment";
case VIA_T: return "via";
case JOINT_T: return "joint";
case SOLID_T: return "solid";
case DIFF_PAIR_T: return "diff-pair";
case HOLE_T: return "hole";
default: return "unknown";
}
}
ITEM::~ITEM()
{
}
const std::string ITEM::Format() const
{
ROUTER* router = ROUTER::GetInstance();
ROUTER_IFACE* iface = router ? router->GetInterface() : nullptr;
std::stringstream ss;
ss << KindStr() << " ";
if( iface )
ss << "net " << iface->GetNetCode( Net() ) << " ";
ss << "layers " << m_layers.Start() << " " << m_layers.End();
return ss.str();
}
const NODE* ITEM::OwningNode() const
{
if( ParentPadVia() )
return static_cast<const NODE*>( ParentPadVia()->Owner() );
else
return static_cast<const NODE*>( Owner() );
}
} // namespace PNS