kicad/qa/tests/libs/kimath/geometry/geom_test_utils.h

373 lines
10 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 KiCad Developers, see AUTHORS.TXT for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef GEOM_TEST_UTILS_H
#define GEOM_TEST_UTILS_H
#include <cmath>
#include <geometry/seg.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_poly_set.h>
#include <qa_utils/numeric.h>
#include <qa_utils/wx_utils/unit_test_utils.h>
/**
* @brief Utility functions for testing geometry functions.
*/
namespace GEOM_TEST
{
/**
* @brief Geometric quadrants, from top-right, anti-clockwise
*
* ^ y
* |
* Q2 | Q1
* -------> x
* Q3 | Q4
*/
enum class QUADRANT {
Q1, Q2, Q3, Q4
};
/*
* @brief Check value in Quadrant 1 (x and y both >= 0)
*/
template<typename T>
bool IsInQuadrant( const VECTOR2<T>& aPoint, QUADRANT aQuadrant )
{
bool isInQuad = false;
switch( aQuadrant )
{
case QUADRANT::Q1:
isInQuad = aPoint.x >= 0 && aPoint.y >= 0;
break;
case QUADRANT::Q2:
isInQuad = aPoint.x <= 0 && aPoint.y >= 0;
break;
case QUADRANT::Q3:
isInQuad = aPoint.x <= 0 && aPoint.y <= 0;
break;
case QUADRANT::Q4:
isInQuad = aPoint.x >= 0 && aPoint.y <= 0;
break;
}
return isInQuad;
}
/*
* @Brief Check if both ends of a segment are in Quadrant 1
*/
inline bool SegmentCompletelyInQuadrant( const SEG& aSeg, QUADRANT aQuadrant )
{
return IsInQuadrant( aSeg.A, aQuadrant)
&& IsInQuadrant( aSeg.B, aQuadrant );
}
/*
* @brief Check if at least one end of the segment is in Quadrant 1
*/
inline bool SegmentEndsInQuadrant( const SEG& aSeg, QUADRANT aQuadrant )
{
return IsInQuadrant( aSeg.A, aQuadrant )
|| IsInQuadrant( aSeg.B, aQuadrant );
}
/*
* @brief Check if a segment is entirely within a certain radius of a point.
*/
inline bool SegmentCompletelyWithinRadius( const SEG& aSeg, const VECTOR2I& aPt, const int aRadius )
{
// This is true iff both ends of the segment are within the radius
return ( ( aSeg.A - aPt ).EuclideanNorm() < aRadius )
&& ( ( aSeg.B - aPt ).EuclideanNorm() < aRadius );
}
/**
* Check that two points are the given distance apart, within the given tolerance.
*
* @tparam T the dimension type
* @param aPtA the first point
* @param aPtB the second point
* @param aExpDist the expected distance
* @param aTol the permitted tolerance
*/
template <typename T>
bool IsPointAtDistance( const VECTOR2<T>& aPtA, const VECTOR2<T>& aPtB, T aExpDist, T aTol )
{
const int dist = ( aPtB - aPtA ).EuclideanNorm();
const bool ok = KI_TEST::IsWithin( dist, aExpDist, aTol );
if( !ok )
{
BOOST_TEST_INFO( "Points not at expected distance: distance is " << dist << ", expected "
<< aExpDist );
}
return ok;
}
/**
* Predicate for checking a set of points is within a certain tolerance of
* a circle
* @param aPoints the points to check
* @param aCentre the circle centre
* @param aRad the circle radius
* @param aTolEnds the tolerance for the endpoint-centre distance
* @return true if predicate met
*/
template <typename T>
bool ArePointsNearCircle(
const std::vector<VECTOR2<T>>& aPoints, const VECTOR2<T>& aCentre, T aRad, T aTol )
{
bool ok = true;
for( unsigned i = 0; i < aPoints.size(); ++i )
{
if( !IsPointAtDistance( aPoints[i], aCentre, aRad, aTol ) )
{
BOOST_TEST_INFO( "Point " << i << " " << aPoints[i] << " is not within tolerance ("
<< aTol << ") of radius (" << aRad << ") from centre point "
<< aCentre );
ok = false;
}
}
return ok;
}
/*
* @brief Check if two vectors are perpendicular
*
* @param a: vector A
* @param b: vector B
* @param aTolerance: the allowed deviation from PI/2 (e.g. when rounding)
*/
template<typename T>
bool ArePerpendicular( const VECTOR2<T>& a, const VECTOR2<T>& b, const EDA_ANGLE& aTolerance )
{
EDA_ANGLE angle = std::abs( EDA_ANGLE( a ) - EDA_ANGLE( b ) );
// Normalise: angles of 3*pi/2 are also perpendicular
if (angle > ANGLE_180)
angle -= ANGLE_180;
return KI_TEST::IsWithin( angle.AsRadians(), ANGLE_90.AsRadians(), aTolerance.AsRadians() );
}
/**
* @brief construct a square polygon of given size width and centre
*
* @param aSize: the side width (must be divisible by 2 if want to avoid rounding)
* @param aCentre: the centre of the square
*/
inline SHAPE_LINE_CHAIN MakeSquarePolyLine( int aSize, const VECTOR2I& aCentre )
{
SHAPE_LINE_CHAIN polyLine;
const VECTOR2I corner = aCentre + aSize / 2;
polyLine.Append( VECTOR2I( corner.x, corner.y ) );
polyLine.Append( VECTOR2I( -corner.x, corner.y ) ) ;
polyLine.Append( VECTOR2I( -corner.x, -corner.y ) );
polyLine.Append( VECTOR2I( corner.x, -corner.y ) );
polyLine.SetClosed( true );
return polyLine;
}
/*
* @brief Fillet every polygon in a set and return a new set
*/
inline SHAPE_POLY_SET FilletPolySet( SHAPE_POLY_SET& aPolySet, int aRadius, int aError )
{
SHAPE_POLY_SET filletedPolySet;
for ( int i = 0; i < aPolySet.OutlineCount(); ++i )
{
const auto filleted = aPolySet.FilletPolygon( aRadius, aError, i );
filletedPolySet.AddOutline( filleted[0] );
}
return filletedPolySet;
}
/**
* Verify that a SHAPE_LINE_CHAIN has been assembled correctly by ensuring that the
* arc start and end points match points on the chain and that any points inside the arcs
* actually collide with the arc segments (with an error margin of 5000 IU)
*
* @param aChain to test
* @return true if outline is valid
*/
inline bool IsOutlineValid( const SHAPE_LINE_CHAIN& aChain )
{
ssize_t prevArcIdx = -1;
std::set<size_t> testedArcs;
if( aChain.PointCount() > 0 && !aChain.IsClosed() && aChain.IsSharedPt( 0 ) )
return false; //can't have first point being shared on an open chain
for( int i = 0; i < aChain.PointCount(); i++ )
{
ssize_t arcIdx = aChain.ArcIndex( i );
if( arcIdx >= 0 )
{
// Point on arc, lets make sure it collides with the arc shape and we haven't
// previously seen the same arc index
if( prevArcIdx != arcIdx && testedArcs.count( arcIdx ) )
return false; // we've already seen this arc before, not contiguous
if( !aChain.Arc( arcIdx ).Collide( aChain.CPoint( i ),
SHAPE_ARC::DefaultAccuracyForPCB() ) )
{
return false;
}
testedArcs.insert( arcIdx );
}
if( prevArcIdx != arcIdx )
{
// we have changed arc shapes, run a few extra tests
if( prevArcIdx >= 0 )
{
// prev point on arc, test that the last arc point on the chain
// matches the end point of the arc
VECTOR2I pointToTest = aChain.CPoint( i );
if( !aChain.IsSharedPt( i ) )
pointToTest = aChain.CPoint( i - 1 );
SHAPE_ARC lastArc = aChain.Arc( prevArcIdx );
if( lastArc.GetP1() != pointToTest )
return false;
}
if( arcIdx >= 0 )
{
// new arc, test that the start point of the arc matches the point on the chain
VECTOR2I pointToTest = aChain.CPoint( i );
SHAPE_ARC currentArc = aChain.Arc( arcIdx );
if( currentArc.GetP0() != pointToTest )
return false;
}
}
prevArcIdx = arcIdx;
}
// Make sure last arc point matches the end of the arc
if( prevArcIdx >= 0 )
{
if( aChain.IsClosed() && aChain.IsSharedPt( 0 ) )
{
if( aChain.CShapes()[0].first != prevArcIdx )
return false;
if( aChain.Arc( prevArcIdx ).GetP1() != aChain.CPoint( 0 ) )
return false;
}
else
{
if( aChain.Arc( prevArcIdx ).GetP1() != aChain.CPoint( -1 ) )
return false;
}
}
return true;
}
/**
* Verify that a SHAPE_POLY_SET has been assembled correctly by verifying each of the outlines
* and holes contained within
*
* @param aSet to test
* @return true if the poly set is valid
*/
inline bool IsPolySetValid( const SHAPE_POLY_SET& aSet )
{
for( int i = 0; i < aSet.OutlineCount(); i++ )
{
if( !IsOutlineValid( aSet.Outline( i ) ) )
return false;
for( int j = 0; j < aSet.HoleCount( i ); j++ )
{
if( !IsOutlineValid( aSet.CHole( i, j ) ) )
return false;
}
}
return true;
}
/**
* @brief Check that two SEGs have the same end points, in either order
*
* That is to say SEG(A, B) == SEG(A, B), but also SEG(A, B) == SEG(B, A)
*/
inline bool SegmentsHaveSameEndPoints( const SEG& aSeg1, const SEG& aSeg2 )
{
return ( aSeg1.A == aSeg2.A && aSeg1.B == aSeg2.B )
|| ( aSeg1.A == aSeg2.B && aSeg1.B == aSeg2.A );
}
} // namespace GEOM_TEST
namespace BOOST_TEST_PRINT_NAMESPACE_OPEN
{
template <>
struct print_log_value<SHAPE_LINE_CHAIN>
{
inline void operator()( std::ostream& os, const SHAPE_LINE_CHAIN& c )
{
os << "SHAPE_LINE_CHAIN: " << c.PointCount() << " points: [\n";
for( int i = 0; i < c.PointCount(); ++i )
{
os << " " << i << ": " << c.CPoint( i ) << "\n";
}
os << "]";
}
};
}
BOOST_TEST_PRINT_NAMESPACE_CLOSE
#endif // GEOM_TEST_UTILS_H