kicad/pcbnew/autorouter/graphpcb.cpp

844 lines
24 KiB
C++

/**
* @file graphpcb.cpp
* @brief PCB editor autorouting and "graphics" routines.
*/
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@verizon.net>
*
* Copyright (C) 1992-2012 KiCad Developers, see change_log.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <fctsys.h>
#include <common.h>
#include <macros.h>
#include <trigo.h>
#include <math_for_graphics.h>
#include <class_board.h>
#include <class_track.h>
#include <class_drawsegment.h>
#include <pcbnew.h>
#include <autorout.h>
#include <cell.h>
void TracePcbLine( int x0, int y0, int x1, int y1, LAYER_NUM layer, int color );
void TraceArc( int ux0, int uy0,
int ux1, int uy1,
double ArcAngle,
int lg, LAYER_NUM layer, int color,
int op_logic );
static void DrawSegmentQcq( int ux0, int uy0,
int ux1, int uy1,
int lg, LAYER_NUM layer, int color,
int op_logic );
static void TraceFilledCircle( int cx, int cy, int radius,
LSET aLayerMask,
int color,
int op_logic );
static void TraceCircle( int ux0, int uy0, int ux1, int uy1, int lg, LAYER_NUM layer,
int color, int op_logic );
// Macro call to update cell.
#define OP_CELL( layer, dy, dx ) \
{ \
if( layer == UNDEFINED_LAYER ) \
{ \
RoutingMatrix.WriteCell( dy, dx, BOTTOM, color ); \
if( RoutingMatrix.m_RoutingLayersCount > 1 ) \
RoutingMatrix.WriteCell( dy, dx, TOP, color ); \
} \
else \
{ \
if( layer == g_Route_Layer_BOTTOM ) \
RoutingMatrix.WriteCell( dy, dx, BOTTOM, color ); \
if( RoutingMatrix.m_RoutingLayersCount > 1 ) \
if( layer == g_Route_Layer_TOP ) \
RoutingMatrix.WriteCell( dy, dx, TOP, color ); \
} \
}
void PlacePad( D_PAD* aPad, int color, int marge, int op_logic )
{
int dx, dy;
wxPoint shape_pos = aPad->ShapePos();
dx = aPad->GetSize().x / 2;
dx += marge;
if( aPad->GetShape() == PAD_SHAPE_CIRCLE )
{
TraceFilledCircle( shape_pos.x, shape_pos.y, dx,
aPad->GetLayerSet(), color, op_logic );
return;
}
dy = aPad->GetSize().y / 2;
dy += marge;
if( aPad->GetShape() == PAD_SHAPE_TRAPEZOID )
{
dx += abs( aPad->GetDelta().y ) / 2;
dy += abs( aPad->GetDelta().x ) / 2;
}
// The pad is a rectangle ( horizontal or vertical )
if( int( aPad->GetOrientation() ) % 900 == 0 )
{
// Orientation turned 90 deg.
if( aPad->GetOrientation() == 900 || aPad->GetOrientation() == 2700 )
{
std::swap( dx, dy );
}
TraceFilledRectangle( shape_pos.x - dx, shape_pos.y - dy,
shape_pos.x + dx, shape_pos.y + dy,
aPad->GetLayerSet(), color, op_logic );
}
else
{
TraceFilledRectangle( shape_pos.x - dx, shape_pos.y - dy,
shape_pos.x + dx, shape_pos.y + dy,
aPad->GetOrientation(),
aPad->GetLayerSet(), color, op_logic );
}
}
/* Set to color the cells included in the circle
* Parameters:
* center: cx, cy.
* radius: a value add to the radius or half the score pad
* aLayerMask: layer occupied
* color: mask write in cells
* op_logic: type of writing in the cell (WRITE, OR)
*/
void TraceFilledCircle( int cx, int cy, int radius,
LSET aLayerMask, int color, int op_logic )
{
int row, col;
int ux0, uy0, ux1, uy1;
int row_max, col_max, row_min, col_min;
int trace = 0;
double fdistmin, fdistx, fdisty;
int tstwrite = 0;
int distmin;
if( aLayerMask[g_Route_Layer_BOTTOM] )
trace = 1; // Trace on BOTTOM
if( aLayerMask[g_Route_Layer_TOP] )
if( RoutingMatrix.m_RoutingLayersCount > 1 )
trace |= 2; // Trace on TOP
if( trace == 0 )
return;
RoutingMatrix.SetCellOperation( op_logic );
cx -= RoutingMatrix.GetBrdCoordOrigin().x;
cy -= RoutingMatrix.GetBrdCoordOrigin().y;
distmin = radius;
// Calculate the bounding rectangle of the circle.
ux0 = cx - radius;
uy0 = cy - radius;
ux1 = cx + radius;
uy1 = cy + radius;
// Calculate limit coordinates of cells belonging to the rectangle.
row_max = uy1 / RoutingMatrix.m_GridRouting;
col_max = ux1 / RoutingMatrix.m_GridRouting;
row_min = uy0 / RoutingMatrix.m_GridRouting; // if (uy0 > row_min*Board.m_GridRouting) row_min++;
col_min = ux0 / RoutingMatrix.m_GridRouting; // if (ux0 > col_min*Board.m_GridRouting) col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= (RoutingMatrix.m_Nrows - 1) )
row_max = RoutingMatrix.m_Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= (RoutingMatrix.m_Ncols - 1) )
col_max = RoutingMatrix.m_Ncols - 1;
// Calculate coordinate limits of cell belonging to the rectangle.
if( row_min > row_max )
row_max = row_min;
if( col_min > col_max )
col_max = col_min;
fdistmin = (double) distmin * distmin;
for( row = row_min; row <= row_max; row++ )
{
fdisty = (double) ( cy - ( row * RoutingMatrix.m_GridRouting ) );
fdisty *= fdisty;
for( col = col_min; col <= col_max; col++ )
{
fdistx = (double) ( cx - ( col * RoutingMatrix.m_GridRouting ) );
fdistx *= fdistx;
if( fdistmin <= ( fdistx + fdisty ) )
continue;
if( trace & 1 )
RoutingMatrix.WriteCell( row, col, BOTTOM, color );
if( trace & 2 )
RoutingMatrix.WriteCell( row, col, TOP, color );
tstwrite = 1;
}
}
if( tstwrite )
return;
/* If no cell has been written, it affects the 4 neighboring diagonal
* (Adverse event: pad off grid in the center of the 4 neighboring
* diagonal) */
distmin = RoutingMatrix.m_GridRouting / 2 + 1;
fdistmin = ( (double) distmin * distmin ) * 2; // Distance to center point diagonally
for( row = row_min; row <= row_max; row++ )
{
fdisty = (double) ( cy - ( row * RoutingMatrix.m_GridRouting ) );
fdisty *= fdisty;
for( col = col_min; col <= col_max; col++ )
{
fdistx = (double) ( cx - ( col * RoutingMatrix.m_GridRouting ) );
fdistx *= fdistx;
if( fdistmin <= ( fdistx + fdisty ) )
continue;
if( trace & 1 )
RoutingMatrix.WriteCell( row, col, BOTTOM, color );
if( trace & 2 )
RoutingMatrix.WriteCell( row, col, TOP, color );
}
}
}
void TraceSegmentPcb( DRAWSEGMENT* pt_segm, int color, int marge, int op_logic )
{
int half_width = ( pt_segm->GetWidth() / 2 ) + marge;
// Calculate the bounding rectangle of the segment (if H, V or Via)
int ux0 = pt_segm->GetStart().x - RoutingMatrix.GetBrdCoordOrigin().x;
int uy0 = pt_segm->GetStart().y - RoutingMatrix.GetBrdCoordOrigin().y;
int ux1 = pt_segm->GetEnd().x - RoutingMatrix.GetBrdCoordOrigin().x;
int uy1 = pt_segm->GetEnd().y - RoutingMatrix.GetBrdCoordOrigin().y;
LAYER_NUM layer = pt_segm->GetLayer();
if( color == VIA_IMPOSSIBLE )
layer = UNDEFINED_LAYER;
switch( pt_segm->GetShape() )
{
// The segment is here a straight line or a circle or an arc.:
case S_CIRCLE:
TraceCircle( ux0, uy0, ux1, uy1, half_width, layer, color, op_logic );
break;
case S_ARC:
TraceArc( ux0, uy0, ux1, uy1, pt_segm->GetAngle(), half_width, layer, color, op_logic );
break;
// The segment is here a line segment.
default:
DrawSegmentQcq( ux0, uy0, ux1, uy1, half_width, layer, color, op_logic );
break;
}
}
void TraceSegmentPcb( TRACK* aTrack, int color, int marge, int op_logic )
{
int half_width = ( aTrack->GetWidth() / 2 ) + marge;
// Test if VIA (filled circle need to be drawn)
if( aTrack->Type() == PCB_VIA_T )
{
LSET layer_mask;
if( aTrack->IsOnLayer( g_Route_Layer_BOTTOM ) )
layer_mask.set( g_Route_Layer_BOTTOM );
if( aTrack->IsOnLayer( g_Route_Layer_TOP ) )
{
if( !layer_mask.any() )
layer_mask = LSET( g_Route_Layer_TOP );
else
layer_mask.set();
}
if( color == VIA_IMPOSSIBLE )
layer_mask.set();
if( layer_mask.any() )
TraceFilledCircle( aTrack->GetStart().x, aTrack->GetStart().y,
half_width, layer_mask, color, op_logic );
}
else
{
// Calculate the bounding rectangle of the segment
int ux0 = aTrack->GetStart().x - RoutingMatrix.GetBrdCoordOrigin().x;
int uy0 = aTrack->GetStart().y - RoutingMatrix.GetBrdCoordOrigin().y;
int ux1 = aTrack->GetEnd().x - RoutingMatrix.GetBrdCoordOrigin().x;
int uy1 = aTrack->GetEnd().y - RoutingMatrix.GetBrdCoordOrigin().y;
// Ordinary track
PCB_LAYER_ID layer = aTrack->GetLayer();
if( color == VIA_IMPOSSIBLE )
layer = UNDEFINED_LAYER;
DrawSegmentQcq( ux0, uy0, ux1, uy1, half_width, layer, color, op_logic );
}
}
/* Draws a line, if layer = -1 on all layers
*/
void TracePcbLine( int x0, int y0, int x1, int y1, LAYER_NUM layer, int color, int op_logic )
{
int dx, dy, lim;
int cumul, inc, il, delta;
RoutingMatrix.SetCellOperation( op_logic );
if( x0 == x1 ) // Vertical.
{
if( y1 < y0 )
std::swap( y0, y1 );
dy = y0 / RoutingMatrix.m_GridRouting;
lim = y1 / RoutingMatrix.m_GridRouting;
dx = x0 / RoutingMatrix.m_GridRouting;
// Clipping limits of board.
if( ( dx < 0 ) || ( dx >= RoutingMatrix.m_Ncols ) )
return;
if( dy < 0 )
dy = 0;
if( lim >= RoutingMatrix.m_Nrows )
lim = RoutingMatrix.m_Nrows - 1;
for( ; dy <= lim; dy++ )
{
OP_CELL( layer, dy, dx );
}
return;
}
if( y0 == y1 ) // Horizontal
{
if( x1 < x0 )
std::swap( x0, x1 );
dx = x0 / RoutingMatrix.m_GridRouting;
lim = x1 / RoutingMatrix.m_GridRouting;
dy = y0 / RoutingMatrix.m_GridRouting;
// Clipping limits of board.
if( ( dy < 0 ) || ( dy >= RoutingMatrix.m_Nrows ) )
return;
if( dx < 0 )
dx = 0;
if( lim >= RoutingMatrix.m_Ncols )
lim = RoutingMatrix.m_Ncols - 1;
for( ; dx <= lim; dx++ )
{
OP_CELL( layer, dy, dx );
}
return;
}
// Here is some perspective: using the algorithm LUCAS.
if( abs( x1 - x0 ) >= abs( y1 - y0 ) ) // segment slightly inclined/
{
if( x1 < x0 )
{
std::swap( x1, x0 );
std::swap( y1, y0 );
}
dx = x0 / RoutingMatrix.m_GridRouting;
lim = x1 / RoutingMatrix.m_GridRouting;
dy = y0 / RoutingMatrix.m_GridRouting;
inc = 1;
if( y1 < y0 )
inc = -1;
il = lim - dx; cumul = il / 2;
delta = abs( y1 - y0 ) / RoutingMatrix.m_GridRouting;
for( ; dx <= lim; )
{
if( ( dx >= 0 ) && ( dy >= 0 ) &&
( dx < RoutingMatrix.m_Ncols ) &&
( dy < RoutingMatrix.m_Nrows ) )
{
OP_CELL( layer, dy, dx );
}
dx++;
cumul += delta;
if( cumul > il )
{
cumul -= il;
dy += inc;
}
}
}
else
{
if( y1 < y0 )
{
std::swap( x1, x0 );
std::swap( y1, y0 );
}
dy = y0 / RoutingMatrix.m_GridRouting;
lim = y1 / RoutingMatrix.m_GridRouting;
dx = x0 / RoutingMatrix.m_GridRouting;
inc = 1;
if( x1 < x0 )
inc = -1;
il = lim - dy;
cumul = il / 2;
delta = abs( x1 - x0 ) / RoutingMatrix.m_GridRouting;
for( ; dy <= lim; )
{
if( ( dx >= 0 ) && ( dy >= 0 ) && ( dx < RoutingMatrix.m_Ncols ) && ( dy < RoutingMatrix.m_Nrows ) )
{
OP_CELL( layer, dy, dx );
}
dy++;
cumul += delta;
if( cumul > il )
{
cumul -= il;
dx += inc;
}
}
}
}
void TraceFilledRectangle( int ux0, int uy0, int ux1, int uy1,
LSET aLayerMask, int color, int op_logic )
{
int row, col;
int row_min, row_max, col_min, col_max;
int trace = 0;
if( aLayerMask[g_Route_Layer_BOTTOM] )
trace = 1; // Trace on BOTTOM
if( aLayerMask[g_Route_Layer_TOP] && RoutingMatrix.m_RoutingLayersCount > 1 )
trace |= 2; // Trace on TOP
if( trace == 0 )
return;
RoutingMatrix.SetCellOperation( op_logic );
ux0 -= RoutingMatrix.GetBrdCoordOrigin().x;
uy0 -= RoutingMatrix.GetBrdCoordOrigin().y;
ux1 -= RoutingMatrix.GetBrdCoordOrigin().x;
uy1 -= RoutingMatrix.GetBrdCoordOrigin().y;
// Calculating limits coord cells belonging to the rectangle.
row_max = uy1 / RoutingMatrix.m_GridRouting;
col_max = ux1 / RoutingMatrix.m_GridRouting;
row_min = uy0 / RoutingMatrix.m_GridRouting;
if( uy0 > row_min * RoutingMatrix.m_GridRouting )
row_min++;
col_min = ux0 / RoutingMatrix.m_GridRouting;
if( ux0 > col_min * RoutingMatrix.m_GridRouting )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= ( RoutingMatrix.m_Nrows - 1 ) )
row_max = RoutingMatrix.m_Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= ( RoutingMatrix.m_Ncols - 1 ) )
col_max = RoutingMatrix.m_Ncols - 1;
for( row = row_min; row <= row_max; row++ )
{
for( col = col_min; col <= col_max; col++ )
{
if( trace & 1 )
RoutingMatrix.WriteCell( row, col, BOTTOM, color );
if( trace & 2 )
RoutingMatrix.WriteCell( row, col, TOP, color );
}
}
}
void TraceFilledRectangle( int ux0, int uy0, int ux1, int uy1,
double angle, LSET aLayerMask, int color, int op_logic )
{
int row, col;
int cx, cy; // Center of rectangle
int radius; // Radius of the circle
int row_min, row_max, col_min, col_max;
int rotrow, rotcol;
int trace = 0;
if( aLayerMask[g_Route_Layer_BOTTOM] )
trace = 1; // Trace on BOTTOM
if( aLayerMask[g_Route_Layer_TOP] )
{
if( RoutingMatrix.m_RoutingLayersCount > 1 )
trace |= 2; // Trace on TOP
}
if( trace == 0 )
return;
RoutingMatrix.SetCellOperation( op_logic );
ux0 -= RoutingMatrix.GetBrdCoordOrigin().x;
uy0 -= RoutingMatrix.GetBrdCoordOrigin().y;
ux1 -= RoutingMatrix.GetBrdCoordOrigin().x;
uy1 -= RoutingMatrix.GetBrdCoordOrigin().y;
cx = (ux0 + ux1) / 2;
cy = (uy0 + uy1) / 2;
radius = KiROUND( Distance( ux0, uy0, cx, cy ) );
// Calculating coordinate limits belonging to the rectangle.
row_max = ( cy + radius ) / RoutingMatrix.m_GridRouting;
col_max = ( cx + radius ) / RoutingMatrix.m_GridRouting;
row_min = ( cy - radius ) / RoutingMatrix.m_GridRouting;
if( uy0 > row_min * RoutingMatrix.m_GridRouting )
row_min++;
col_min = ( cx - radius ) / RoutingMatrix.m_GridRouting;
if( ux0 > col_min * RoutingMatrix.m_GridRouting )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= ( RoutingMatrix.m_Nrows - 1 ) )
row_max = RoutingMatrix.m_Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= ( RoutingMatrix.m_Ncols - 1 ) )
col_max = RoutingMatrix.m_Ncols - 1;
for( row = row_min; row <= row_max; row++ )
{
for( col = col_min; col <= col_max; col++ )
{
rotrow = row * RoutingMatrix.m_GridRouting;
rotcol = col * RoutingMatrix.m_GridRouting;
RotatePoint( &rotcol, &rotrow, cx, cy, -angle );
if( rotrow <= uy0 )
continue;
if( rotrow >= uy1 )
continue;
if( rotcol <= ux0 )
continue;
if( rotcol >= ux1 )
continue;
if( trace & 1 )
RoutingMatrix.WriteCell( row, col, BOTTOM, color );
if( trace & 2 )
RoutingMatrix.WriteCell( row, col, TOP, color );
}
}
}
/* Fills all cells inside a segment
* half-width = lg, org = ux0,uy0 end = ux1,uy1
* coordinates are in PCB units
*/
void DrawSegmentQcq( int ux0, int uy0, int ux1, int uy1, int lg, LAYER_NUM layer,
int color, int op_logic )
{
int row, col;
int inc;
int row_max, col_max, row_min, col_min;
int demi_pas;
int cx, cy, dx, dy;
RoutingMatrix.SetCellOperation( op_logic );
// Make coordinate ux1 tj > ux0 to simplify calculations
if( ux1 < ux0 )
{
std::swap( ux1, ux0 );
std::swap( uy1, uy0 );
}
// Calculating the incrementing the Y axis
inc = 1;
if( uy1 < uy0 )
inc = -1;
demi_pas = RoutingMatrix.m_GridRouting / 2;
col_min = ( ux0 - lg ) / RoutingMatrix.m_GridRouting;
if( col_min < 0 )
col_min = 0;
col_max = ( ux1 + lg + demi_pas ) / RoutingMatrix.m_GridRouting;
if( col_max > ( RoutingMatrix.m_Ncols - 1 ) )
col_max = RoutingMatrix.m_Ncols - 1;
if( inc > 0 )
{
row_min = ( uy0 - lg ) / RoutingMatrix.m_GridRouting;
row_max = ( uy1 + lg + demi_pas ) / RoutingMatrix.m_GridRouting;
}
else
{
row_min = ( uy1 - lg ) / RoutingMatrix.m_GridRouting;
row_max = ( uy0 + lg + demi_pas ) / RoutingMatrix.m_GridRouting;
}
if( row_min < 0 )
row_min = 0;
if( row_min > ( RoutingMatrix.m_Nrows - 1 ) )
row_min = RoutingMatrix.m_Nrows - 1;
if( row_max < 0 )
row_max = 0;
if( row_max > ( RoutingMatrix.m_Nrows - 1 ) )
row_max = RoutingMatrix.m_Nrows - 1;
dx = ux1 - ux0;
dy = uy1 - uy0;
double angle;
if( dx )
{
angle = ArcTangente( dy, dx );
}
else
{
angle = 900;
if( dy < 0 )
angle = -900;
}
RotatePoint( &dx, &dy, angle ); // dx = length, dy = 0
for( col = col_min; col <= col_max; col++ )
{
int cxr;
cxr = ( col * RoutingMatrix.m_GridRouting ) - ux0;
for( row = row_min; row <= row_max; row++ )
{
cy = (row * RoutingMatrix.m_GridRouting) - uy0;
cx = cxr;
RotatePoint( &cx, &cy, angle );
if( abs( cy ) > lg )
continue; // The point is too far on the Y axis.
/* This point a test is close to the segment: the position
* along the X axis must be tested.
*/
if( ( cx >= 0 ) && ( cx <= dx ) )
{
OP_CELL( layer, row, col );
continue;
}
// Examination of extremities are rounded.
if( ( cx < 0 ) && ( cx >= -lg ) )
{
if( ( ( cx * cx ) + ( cy * cy ) ) <= ( lg * lg ) )
OP_CELL( layer, row, col );
continue;
}
if( ( cx > dx ) && ( cx <= ( dx + lg ) ) )
{
if( ( ( ( cx - dx ) * ( cx - dx ) ) + ( cy * cy ) ) <= ( lg * lg ) )
OP_CELL( layer, row, col );
continue;
}
}
}
}
/* Fills all cells of the routing matrix contained in the circle
* half-width = lg, center = ux0, uy0, ux1,uy1 is a point on the circle.
* coord are in PCB units.
*/
void TraceCircle( int ux0, int uy0, int ux1, int uy1, int lg, LAYER_NUM layer,
int color, int op_logic )
{
int radius, nb_segm;
int x0, y0, // Starting point of the current segment trace.
x1, y1; // End point.
int ii;
int angle;
radius = KiROUND( Distance( ux0, uy0, ux1, uy1 ) );
x0 = x1 = radius;
y0 = y1 = 0;
if( lg < 1 )
lg = 1;
nb_segm = ( 2 * radius ) / lg;
if( nb_segm < 5 )
nb_segm = 5;
if( nb_segm > 100 )
nb_segm = 100;
for( ii = 1; ii < nb_segm; ii++ )
{
angle = (3600 * ii) / nb_segm;
x1 = KiROUND( cosdecideg( radius, angle ) );
y1 = KiROUND( sindecideg( radius, angle ) );
DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logic );
x0 = x1;
y0 = y1;
}
DrawSegmentQcq( x1 + ux0, y1 + uy0, ux0 + radius, uy0, lg, layer, color, op_logic );
}
/* Fills all routing matrix cells contained in the arc
* angle = ArcAngle, half-width lg
* center = ux0,uy0, starting at ux1, uy1. Coordinates are in
* PCB units.
*/
void TraceArc( int ux0, int uy0, int ux1, int uy1, double ArcAngle, int lg,
LAYER_NUM layer, int color, int op_logic )
{
int radius, nb_segm;
int x0, y0, // Starting point of the current segment trace
x1, y1; // End point
int ii;
double angle, StAngle;
radius = KiROUND( Distance( ux0, uy0, ux1, uy1 ) );
x0 = ux1 - ux0;
y0 = uy1 - uy0;
StAngle = ArcTangente( uy1 - uy0, ux1 - ux0 );
if( lg < 1 )
lg = 1;
nb_segm = ( 2 * radius ) / lg;
nb_segm = ( nb_segm * std::abs( ArcAngle ) ) / 3600;
if( nb_segm < 5 )
nb_segm = 5;
if( nb_segm > 100 )
nb_segm = 100;
for( ii = 1; ii <= nb_segm; ii++ )
{
angle = ( ArcAngle * ii ) / nb_segm;
angle += StAngle;
NORMALIZE_ANGLE_POS( angle );
x1 = KiROUND( cosdecideg( radius, angle ) );
y1 = KiROUND( cosdecideg( radius, angle ) );
DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logic );
x0 = x1;
y0 = y1;
}
}