102 lines
3.9 KiB
C++
102 lines
3.9 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2011-2014 Jean-Pierre Charras, jp.charras at wanadoo.fr
|
|
* Copyright (C) 1992-2012 KiCad Developers, see AUTHORS.txt for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
/**
|
|
* @file minimun_spanning_tree.h
|
|
*/
|
|
|
|
#include <vector>
|
|
|
|
/**
|
|
* @brief The class MIN_SPAN_TREE calculates the rectilinear minimum spanning tree
|
|
* of a set of points (pads usually having the same net)
|
|
* this class is an abstract class because you must provide the function
|
|
* int GetWeight( int aItem1, int aItem2 )
|
|
* that calculate the distance between 2 items
|
|
* MIN_SPAN_TREE does not know anything about the actual items to link
|
|
* by the tree
|
|
*/
|
|
class MIN_SPAN_TREE
|
|
{
|
|
protected:
|
|
int m_Size; /* The number of nodes in the graph
|
|
*/
|
|
private:
|
|
std::vector<char> inTree; /* inTree[ii] is a flag set to 1 if the node ii
|
|
* is already in the minimum spanning tree; 0 otherwise
|
|
*/
|
|
std::vector<int> linkedTo; /* linkedTo[ii] holds the index of the node ii would have to be
|
|
* linked to in order to get a distance of d[ii]
|
|
* NOTE: linkedTo[0] is the starting point of the tree
|
|
* linkedTo[1] is the first linked point to use
|
|
* ii and linkedTo[ii] are the 2 ends of an edge in the graph
|
|
*/
|
|
std::vector<int> distTo; /* distTo[ii] is the distance between node ii and the minimum spanning
|
|
* tree;
|
|
* this is initially infinity (INT_MAX);
|
|
* if ii is already in the tree, then d[ii] is undefined;
|
|
* this is just a temporary variable. It's not necessary but speeds
|
|
* up execution considerably (by a factor of n)
|
|
*/
|
|
public:
|
|
MIN_SPAN_TREE();
|
|
void MSP_Init( int aNodesCount );
|
|
void BuildTree();
|
|
|
|
int GetWhoTo( int aIdx )
|
|
{
|
|
return linkedTo[aIdx];
|
|
}
|
|
|
|
|
|
int GetDist( int aIdx )
|
|
{
|
|
return distTo[aIdx];
|
|
}
|
|
|
|
/**
|
|
* Function GetWeight
|
|
* calculates the weight between 2 items
|
|
* NOTE: The weight between a node and itself should be 0
|
|
* It is virtual pure, you must provide your GetWeight function
|
|
* @param aItem1 = first item
|
|
* @param aItem2 = other item
|
|
* @return the weight between items ( usually the distance )
|
|
*/
|
|
virtual int GetWeight( int aItem1, int aItem2 ) = 0;
|
|
|
|
private:
|
|
|
|
/**
|
|
* Function updateDistances
|
|
* should be called immediately after target is added to the tree;
|
|
* updates d so that the values are correct (goes through target's
|
|
* neighbours making sure that the distances between them and the tree
|
|
* are indeed minimum)
|
|
* @param aTarget = index of curr item
|
|
*/
|
|
void updateDistances( int aTarget );
|
|
|
|
};
|