kicad/pcbnew/connectivity_data.cpp

723 lines
17 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2017 CERN
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifdef PROFILE
#include <profile.h>
#endif
#include <thread>
#include <connectivity_data.h>
#include <connectivity_algo.h>
#include <ratsnest_data.h>
CONNECTIVITY_DATA::CONNECTIVITY_DATA()
{
m_connAlgo.reset( new CN_CONNECTIVITY_ALGO );
m_progressReporter = nullptr;
}
CONNECTIVITY_DATA::~CONNECTIVITY_DATA()
{
Clear();
}
bool CONNECTIVITY_DATA::Add( BOARD_ITEM* aItem )
{
m_connAlgo->Add( aItem );
return true;
}
bool CONNECTIVITY_DATA::Remove( BOARD_ITEM* aItem )
{
m_connAlgo->Remove( aItem );
return true;
}
bool CONNECTIVITY_DATA::Update( BOARD_ITEM* aItem )
{
m_connAlgo->Remove( aItem );
m_connAlgo->Add( aItem );
return true;
}
void CONNECTIVITY_DATA::Build( BOARD* aBoard )
{
m_connAlgo.reset( new CN_CONNECTIVITY_ALGO );
m_connAlgo->Build( aBoard );
RecalculateRatsnest();
}
void CONNECTIVITY_DATA::Build( const std::vector<BOARD_ITEM*>& aItems )
{
m_connAlgo.reset( new CN_CONNECTIVITY_ALGO );
m_connAlgo->Build( aItems );
RecalculateRatsnest();
}
void CONNECTIVITY_DATA::updateRatsnest()
{
#ifdef PROFILE
PROF_COUNTER rnUpdate( "update-ratsnest" );
#endif
size_t numDirty = std::count_if( m_nets.begin() + 1, m_nets.end(), [] ( RN_NET* aNet )
{ return aNet->IsDirty(); } );
// Start with net 1 as net 0 is reserved for not-connected
std::atomic<size_t> nextNet( 1 );
std::atomic<size_t> threadsFinished( 0 );
auto update_lambda = [&nextNet, &threadsFinished, this]()
{
for( size_t i = nextNet.fetch_add( 1 ); i < m_nets.size(); i = nextNet.fetch_add( 1 ) )
{
if( m_nets[i]->IsDirty() )
m_nets[i]->Update();
}
threadsFinished++;
};
// We don't want to spin up a new thread for fewer than two nets (overhead costs)
size_t parallelThreadCount = std::min<size_t>(
std::max<size_t>( std::thread::hardware_concurrency(), 2 ),
( numDirty + 1 ) / 2 );
// This prevents generating a thread for point while routing as we are only
// updating the ratsnest on a single net
if( parallelThreadCount == 1 )
update_lambda();
else
{
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
{
std::thread( update_lambda ).detach();
}
}
// Finalize the ratsnest threads
while( threadsFinished < parallelThreadCount )
std::this_thread::sleep_for( std::chrono::milliseconds( 1 ) );
#ifdef PROFILE
rnUpdate.Show();
#endif /* PROFILE */
}
void CONNECTIVITY_DATA::addRatsnestCluster( const std::shared_ptr<CN_CLUSTER>& aCluster )
{
auto rnNet = m_nets[ aCluster->OriginNet() ];
rnNet->AddCluster( aCluster );
}
void CONNECTIVITY_DATA::RecalculateRatsnest()
{
m_connAlgo->PropagateNets();
int lastNet = m_connAlgo->NetCount();
if( lastNet >= (int) m_nets.size() )
{
unsigned int prevSize = m_nets.size();
m_nets.resize( lastNet + 1 );
for( unsigned int i = prevSize; i < m_nets.size(); i++ )
m_nets[i] = new RN_NET;
}
auto clusters = m_connAlgo->GetClusters();
int dirtyNets = 0;
for( int net = 0; net < lastNet; net++ )
{
if( m_connAlgo->IsNetDirty( net ) )
{
m_nets[net]->Clear();
dirtyNets++;
}
}
for( auto c : clusters )
{
int net = c->OriginNet();
if( m_connAlgo->IsNetDirty( net ) )
{
addRatsnestCluster( c );
}
}
m_connAlgo->ClearDirtyFlags();
updateRatsnest();
}
void CONNECTIVITY_DATA::BlockRatsnestItems( const std::vector<BOARD_ITEM*>& aItems )
{
std::vector<BOARD_CONNECTED_ITEM*> citems;
for( auto item : aItems )
{
if( item->Type() == PCB_MODULE_T )
{
for( auto pad : static_cast<MODULE*>(item)->Pads() )
citems.push_back( pad );
}
else
{
citems.push_back( static_cast<BOARD_CONNECTED_ITEM*>(item) );
}
}
for( auto item : citems )
{
if ( m_connAlgo->ItemExists( item ) )
{
auto& entry = m_connAlgo->ItemEntry( item );
for( auto cnItem : entry.GetItems() )
{
for( auto anchor : cnItem->Anchors() )
anchor->SetNoLine( true );
}
}
}
}
int CONNECTIVITY_DATA::GetNetCount() const
{
return m_connAlgo->NetCount();
}
void CONNECTIVITY_DATA::FindIsolatedCopperIslands( ZONE_CONTAINER* aZone,
std::vector<int>& aIslands )
{
m_connAlgo->FindIsolatedCopperIslands( aZone, aIslands );
}
void CONNECTIVITY_DATA::FindIsolatedCopperIslands( std::vector<CN_ZONE_ISOLATED_ISLAND_LIST>& aZones )
{
m_connAlgo->FindIsolatedCopperIslands( aZones );
}
int CONNECTIVITY_DATA::countRelevantItems( const std::vector<BOARD_ITEM*>& aItems )
{
int n = 0;
for( const auto item : aItems )
{
switch( item->Type() )
{
case PCB_TRACE_T:
case PCB_PAD_T:
case PCB_ZONE_AREA_T:
case PCB_MODULE_T:
case PCB_VIA_T:
n++;
break;
default:
break;
}
}
return n;
}
void CONNECTIVITY_DATA::ComputeDynamicRatsnest( const std::vector<BOARD_ITEM*>& aItems )
{
if( countRelevantItems( aItems ) == 0 )
{
m_dynamicRatsnest.clear();
return ;
}
m_dynamicConnectivity.reset( new CONNECTIVITY_DATA );
m_dynamicConnectivity->Build( aItems );
m_dynamicRatsnest.clear();
BlockRatsnestItems( aItems );
for( unsigned int nc = 1; nc < m_dynamicConnectivity->m_nets.size(); nc++ )
{
auto dynNet = m_dynamicConnectivity->m_nets[nc];
if( dynNet->GetNodeCount() != 0 )
{
auto ourNet = m_nets[nc];
CN_ANCHOR_PTR nodeA, nodeB;
if( ourNet->NearestBicoloredPair( *dynNet, nodeA, nodeB ) )
{
RN_DYNAMIC_LINE l;
l.a = nodeA->Pos();
l.b = nodeB->Pos();
l.netCode = nc;
m_dynamicRatsnest.push_back( l );
}
}
}
for( auto net : m_dynamicConnectivity->m_nets )
{
if( !net )
continue;
const auto& edges = net->GetUnconnected();
if( edges.empty() )
continue;
for( const auto& edge : edges )
{
const auto& nodeA = edge.GetSourceNode();
const auto& nodeB = edge.GetTargetNode();
RN_DYNAMIC_LINE l;
l.a = nodeA->Pos();
l.b = nodeB->Pos();
l.netCode = 0;
m_dynamicRatsnest.push_back( l );
}
}
}
void CONNECTIVITY_DATA::ClearDynamicRatsnest()
{
m_connAlgo->ForEachAnchor( [] ( CN_ANCHOR& anchor ) { anchor.SetNoLine( false ); } );
HideDynamicRatsnest();
}
void CONNECTIVITY_DATA::HideDynamicRatsnest()
{
m_dynamicConnectivity.reset();
m_dynamicRatsnest.clear();
}
void CONNECTIVITY_DATA::PropagateNets()
{
m_connAlgo->PropagateNets();
}
unsigned int CONNECTIVITY_DATA::GetUnconnectedCount() const
{
unsigned int unconnected = 0;
for( auto net : m_nets )
{
if( !net )
continue;
const auto& edges = net->GetUnconnected();
if( edges.empty() )
continue;
unconnected += edges.size();
}
return unconnected;
}
void CONNECTIVITY_DATA::Clear()
{
for( auto net : m_nets )
delete net;
m_nets.clear();
}
const std::vector<BOARD_CONNECTED_ITEM*> CONNECTIVITY_DATA::GetConnectedItems(
const BOARD_CONNECTED_ITEM* aItem,
const KICAD_T aTypes[] ) const
{
std::vector<BOARD_CONNECTED_ITEM*> rv;
const auto clusters = m_connAlgo->SearchClusters( CN_CONNECTIVITY_ALGO::CSM_CONNECTIVITY_CHECK,
aTypes, aItem->GetNetCode() );
for( auto cl : clusters )
{
if( cl->Contains( aItem ) )
{
for( const auto item : *cl )
{
if( item->Valid() )
rv.push_back( item->Parent() );
}
}
}
return rv;
}
const std::vector<BOARD_CONNECTED_ITEM*> CONNECTIVITY_DATA::GetNetItems( int aNetCode,
const KICAD_T aTypes[] ) const
{
std::set<BOARD_CONNECTED_ITEM*> items;
std::vector<BOARD_CONNECTED_ITEM*> rv;
m_connAlgo->ForEachItem( [&items, aNetCode, &aTypes] ( CN_ITEM& aItem )
{
if( aItem.Valid() && ( aItem.Net() == aNetCode ) )
{
KICAD_T itemType = aItem.Parent()->Type();
for( int i = 0; aTypes[i] > 0; ++i )
{
wxASSERT( aTypes[i] < MAX_STRUCT_TYPE_ID );
if( itemType == aTypes[i] )
{
items.insert( aItem.Parent() );
break;
}
}
}
} );
std::copy( items.begin(), items.end(), std::back_inserter( rv ) );
return rv;
}
bool CONNECTIVITY_DATA::CheckConnectivity( std::vector<CN_DISJOINT_NET_ENTRY>& aReport )
{
RecalculateRatsnest();
for( auto net : m_nets )
{
if( net )
{
for( const auto& edge : net->GetEdges() )
{
CN_DISJOINT_NET_ENTRY ent;
ent.net = edge.GetSourceNode()->Parent()->GetNetCode();
ent.a = edge.GetSourceNode()->Parent();
ent.b = edge.GetTargetNode()->Parent();
ent.anchorA = edge.GetSourceNode()->Pos();
ent.anchorB = edge.GetTargetNode()->Pos();
aReport.push_back( ent );
}
}
}
return aReport.empty();
}
const std::vector<TRACK*> CONNECTIVITY_DATA::GetConnectedTracks( const BOARD_CONNECTED_ITEM* aItem )
const
{
auto& entry = m_connAlgo->ItemEntry( aItem );
std::set<TRACK*> tracks;
std::vector<TRACK*> rv;
for( auto citem : entry.GetItems() )
{
for( auto connected : citem->ConnectedItems() )
{
if( connected->Valid() && ( connected->Parent()->Type() == PCB_TRACE_T || connected->Parent()->Type() == PCB_VIA_T ) )
tracks.insert( static_cast<TRACK*> ( connected->Parent() ) );
}
}
std::copy( tracks.begin(), tracks.end(), std::back_inserter( rv ) );
return rv;
}
const void CONNECTIVITY_DATA::GetConnectedPads( const BOARD_CONNECTED_ITEM* aItem,
std::set<D_PAD*>* pads ) const
{
for( auto citem : m_connAlgo->ItemEntry( aItem ).GetItems() )
{
for( auto connected : citem->ConnectedItems() )
{
if( connected->Valid() && connected->Parent()->Type() == PCB_PAD_T )
pads->insert( static_cast<D_PAD*> ( connected->Parent() ) );
}
}
}
const std::vector<D_PAD*> CONNECTIVITY_DATA::GetConnectedPads( const BOARD_CONNECTED_ITEM* aItem )
const
{
std::set<D_PAD*> pads;
std::vector<D_PAD*> rv;
GetConnectedPads( aItem, &pads );
std::copy( pads.begin(), pads.end(), std::back_inserter( rv ) );
return rv;
}
unsigned int CONNECTIVITY_DATA::GetNodeCount( int aNet ) const
{
int sum = 0;
if( aNet < 0 ) // Node count for all nets
{
for( const auto& net : m_nets )
sum += net->GetNodeCount();
}
else if( aNet < (int) m_nets.size() )
{
sum = m_nets[aNet]->GetNodeCount();
}
return sum;
}
unsigned int CONNECTIVITY_DATA::GetPadCount( int aNet ) const
{
int n = 0;
for( auto pad : m_connAlgo->ItemList() )
{
if( !pad->Valid() || pad->Parent()->Type() != PCB_PAD_T)
continue;
auto dpad = static_cast<D_PAD*>( pad->Parent() );
if( aNet < 0 || aNet == dpad->GetNetCode() )
{
n++;
}
}
return n;
}
const std::vector<VECTOR2I> CONNECTIVITY_DATA::NearestUnconnectedTargets(
const BOARD_CONNECTED_ITEM* aRef,
const VECTOR2I& aPos,
int aNet )
{
CN_CLUSTER_PTR refCluster;
int refNet = -1;
if( aRef )
refNet = aRef->GetNetCode();
if( aNet >= 0 )
refNet = aNet;
if( aRef )
{
for( auto cl : m_connAlgo->GetClusters() )
{
if( cl->Contains( aRef ) )
{
refCluster = cl;
break;
}
}
}
std::set <VECTOR2I> anchors;
for( auto cl : m_connAlgo->GetClusters() )
{
if( cl != refCluster )
{
for( auto item : *cl )
{
if( item->Valid() && item->Parent()->GetNetCode() == refNet
&& item->Parent()->Type() != PCB_ZONE_AREA_T )
{
for( auto anchor : item->Anchors() )
{
anchors.insert( anchor->Pos() );
}
}
}
}
}
std::vector<VECTOR2I> rv;
std::copy( anchors.begin(), anchors.end(), std::back_inserter( rv ) );
std::sort( rv.begin(), rv.end(), [aPos] ( const VECTOR2I& a, const VECTOR2I& b )
{
auto da = (a - aPos).EuclideanNorm();
auto db = (b - aPos).EuclideanNorm();
return da < db;
} );
return rv;
}
void CONNECTIVITY_DATA::GetUnconnectedEdges( std::vector<CN_EDGE>& aEdges) const
{
for( auto rnNet : m_nets )
{
if( rnNet )
{
for( auto edge : rnNet->GetEdges() )
{
aEdges.push_back( edge );
}
}
}
}
const std::vector<BOARD_CONNECTED_ITEM*> CONNECTIVITY_DATA::GetConnectedItems(
const BOARD_CONNECTED_ITEM* aItem, const VECTOR2I& aAnchor, KICAD_T aTypes[] )
{
auto& entry = m_connAlgo->ItemEntry( aItem );
std::vector<BOARD_CONNECTED_ITEM* > rv;
for( auto cnItem : entry.GetItems() )
{
for( auto anchor : cnItem->Anchors() )
{
if( anchor->Pos() == aAnchor )
{
for( int i = 0; aTypes[i] > 0; i++ )
{
if( cnItem->Valid() && cnItem->Parent()->Type() == aTypes[i] )
{
rv.push_back( cnItem->Parent() );
break;
}
}
}
}
}
return rv;
}
RN_NET* CONNECTIVITY_DATA::GetRatsnestForNet( int aNet )
{
if ( aNet < 0 || aNet >= (int) m_nets.size() )
{
return nullptr;
}
return m_nets[ aNet ];
}
void CONNECTIVITY_DATA::MarkItemNetAsDirty( BOARD_ITEM *aItem )
{
if (aItem->Type() == PCB_MODULE_T)
{
for ( auto pad : static_cast<MODULE*>( aItem )->Pads() )
{
m_connAlgo->MarkNetAsDirty( pad->GetNetCode() );
}
}
if (aItem->IsConnected() )
{
m_connAlgo->MarkNetAsDirty( static_cast<BOARD_CONNECTED_ITEM*>( aItem )->GetNetCode() );
}
}
void CONNECTIVITY_DATA::SetProgressReporter( PROGRESS_REPORTER* aReporter )
{
m_progressReporter = aReporter;
m_connAlgo->SetProgressReporter( m_progressReporter );
}
const std::vector<CN_EDGE> CONNECTIVITY_DATA::GetRatsnestForComponent( MODULE* aComponent, bool aSkipInternalConnections )
{
std::set<int> nets;
std::set<D_PAD*> pads;
std::vector<CN_EDGE> edges;
for( auto pad : aComponent->Pads() )
{
nets.insert( pad->GetNetCode() );
pads.insert( pad );
}
for ( auto netcode : nets )
{
auto net = GetRatsnestForNet( netcode );
for ( auto edge : net->GetEdges() )
{
auto srcNode = edge.GetSourceNode();
auto dstNode = edge.GetTargetNode();
auto srcParent = static_cast<D_PAD*>( srcNode->Parent() );
auto dstParent = static_cast<D_PAD*>( dstNode->Parent() );
bool srcFound = ( pads.find(srcParent) != pads.end() );
bool dstFound = ( pads.find(dstParent) != pads.end() );
if ( srcFound && dstFound && !aSkipInternalConnections )
{
edges.push_back( edge );
}
else if ( srcFound || dstFound )
{
edges.push_back( edge );
}
}
}
return edges;
}