kicad/libs/kimath/src/bezier_curves.cpp

205 lines
7.7 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/************************************/
/* routines to handle bezier curves */
/************************************/
#include <bezier_curves.h>
#include <geometry/ellipse.h>
#include <trigo.h>
#include <math/vector2d.h> // for VECTOR2D, operator*, VECTOR2
#include <wx/debug.h> // for wxASSERT
BEZIER_POLY::BEZIER_POLY( const VECTOR2I& aStart, const VECTOR2I& aCtrl1,
const VECTOR2I& aCtrl2, const VECTOR2I& aEnd )
{
m_ctrlPts.emplace_back( VECTOR2D( aStart ) );
m_ctrlPts.emplace_back( VECTOR2D( aCtrl1 ) );
m_ctrlPts.emplace_back( VECTOR2D( aCtrl2 ) );
m_ctrlPts.emplace_back( VECTOR2D( aEnd ) );
m_minSegLen = 0.0;
}
BEZIER_POLY::BEZIER_POLY( const std::vector<VECTOR2I>& aControlPoints )
{
for( unsigned ii = 0; ii < aControlPoints.size(); ++ii )
m_ctrlPts.emplace_back( VECTOR2I( aControlPoints[ii] ) );
m_minSegLen = 0.0;
}
void BEZIER_POLY::GetPoly( std::vector<VECTOR2I>& aOutput, int aMinSegLen, int aMaxSegCount )
{
aOutput.clear();
std::vector<VECTOR2D> buffer;
GetPoly( buffer, double( aMinSegLen ), aMaxSegCount );
for( unsigned ii = 0; ii < buffer.size(); ++ii )
aOutput.emplace_back( VECTOR2I( int( buffer[ii].x ), int( buffer[ii].y ) ) );
}
void BEZIER_POLY::GetPoly( std::vector<VECTOR2D>& aOutput, double aMinSegLen, int aMaxSegCount )
{
wxASSERT( m_ctrlPts.size() == 4 );
// FIXME Brute force method, use a better (recursive?) algorithm
// with a max error value.
// to optimize the number of segments
double dt = 1.0 / aMaxSegCount;
aOutput.clear();
aOutput.push_back( m_ctrlPts[0] );
// If the Bezier curve is degenerated (straight line), skip intermediate points:
bool degenerated = m_ctrlPts[0] == m_ctrlPts[1] && m_ctrlPts[2] == m_ctrlPts[3];
if( !degenerated )
{
for( int ii = 1; ii < aMaxSegCount; ii++ )
{
double t = dt * ii;
double omt = 1.0 - t;
double omt2 = omt * omt;
double omt3 = omt * omt2;
double t2 = t * t;
double t3 = t * t2;
VECTOR2D vertex = omt3 * m_ctrlPts[0]
+ 3.0 * t * omt2 * m_ctrlPts[1]
+ 3.0 * t2 * omt * m_ctrlPts[2]
+ t3 * m_ctrlPts[3];
// a minimal filter on the length of the segment being created:
// The offset from last point:
VECTOR2D delta = vertex - aOutput.back();
double dist = delta.EuclideanNorm();
if( dist > aMinSegLen )
aOutput.push_back( vertex );
}
}
if( aOutput.back() != m_ctrlPts[3] )
aOutput.push_back( m_ctrlPts[3] );
}
template<typename T>
void TransformEllipseToBeziers( const ELLIPSE<T>& aEllipse, std::vector<BEZIER<T>>& aBeziers )
{
EDA_ANGLE arcAngle = -( aEllipse.EndAngle - aEllipse.StartAngle );
if( arcAngle >= ANGLE_0 )
arcAngle -= ANGLE_360;
/*
* KiCad does not natively support ellipses or elliptical arcs. So, we convert them to Bezier
* splines as these are the nearest thing we have that represents them in a way that is both
* editable and preserves their curvature accurately (enough).
*
* Credit to Kliment for developing and documenting this method.
*/
/// Minimum number of Beziers to use for a full circle to keep error manageable.
const int minBeziersPerCircle = 4;
/// The number of Beziers needed for the given arc
const int numBeziers = std::ceil( std::abs( arcAngle.AsRadians() /
( 2 * M_PI / minBeziersPerCircle ) ) );
/// Angle occupied by each Bezier
const double angleIncrement = arcAngle.AsRadians() / numBeziers;
/*
* Now, let's assume a circle of radius 1, centered on origin, with angle startangle
* x-axis-aligned. We'll move, scale, and rotate it later. We're creating Bezier curves that hug
* this circle as closely as possible, with the angles that will be used on the final ellipse
* too.
*
* Thanks to the beautiful and excellent https://pomax.github.io/bezierinfo we know how to
* define a curve that hugs a circle as closely as possible.
*
* We need the value k, which is the optimal distance from the endpoint to the control point to
* make the curve match the circle for a given circle arc angle.
*
* k = 4/3 * tan(θ/4), where θ is the angle of the arc. In our case, θ=angleIncrement
*/
double theta = angleIncrement;
double k = ( 4. / 3. ) * std::tan( theta / 4 );
/*
* Define our Bezier:
* - Start point is on the circle at the x-axis
* - First control point just uses k as the y-value
* - Second control point is offset from the end point
* - End point is defined by the angle of the arc segment
* Note that we use double here no matter what the template param is; round at the end only.
*/
BEZIER<double> first = { { 1, 0 },
{ 1, k },
{ std::cos( theta ) + k * std::sin( theta ),
std::sin( theta ) - k * std::cos( theta ) },
{ std::cos( theta ), std::sin( theta ) } };
/*
* Now construct the actual segments by transforming/rotating the first one
*/
auto transformPoint =
[&]( VECTOR2D aPoint, const double aAngle ) -> VECTOR2D
{
// Bring to the actual starting angle
RotatePoint( aPoint,
-EDA_ANGLE( aAngle - aEllipse.StartAngle.AsRadians(), RADIANS_T ) );
// Then scale to the major and minor radiuses of the ellipse
aPoint *= VECTOR2D( aEllipse.MajorRadius, aEllipse.MinorRadius );
// Now rotate to the ellipse coordinate system
RotatePoint( aPoint, -aEllipse.Rotation );
// And finally offset to the center location of the ellipse
aPoint += aEllipse.Center;
return aPoint;
};
for( int i = 0; i < numBeziers; i++ )
{
aBeziers.emplace_back( BEZIER<T>( {
transformPoint( first.Start, i * angleIncrement ),
transformPoint( first.C1, i * angleIncrement ),
transformPoint( first.C2, i * angleIncrement ),
transformPoint( first.End, i * angleIncrement )
} ) );
}
}
template void TransformEllipseToBeziers( const ELLIPSE<double>& aEllipse,
std::vector<BEZIER<double>>& aBeziers );
template void TransformEllipseToBeziers( const ELLIPSE<int>& aEllipse,
std::vector<BEZIER<int>>& aBeziers );