kicad/pcbnew/router/pns_meander_placer.cpp

271 lines
6.3 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2015 CERN
* Copyright (C) 2016 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <base_units.h> // God forgive me doing this...
#include "pns_debug_decorator.h"
#include "pns_itemset.h"
#include "pns_meander_placer.h"
#include "pns_node.h"
#include "pns_router.h"
#include "pns_solid.h"
#include "pns_topology.h"
namespace PNS {
MEANDER_PLACER::MEANDER_PLACER( ROUTER* aRouter ) :
MEANDER_PLACER_BASE( aRouter )
{
m_currentNode = NULL;
// Init temporary variables (do not leave uninitialized members)
m_initialSegment = NULL;
m_lastLength = 0;
m_lastStatus = TOO_SHORT;
}
MEANDER_PLACER::~MEANDER_PLACER()
{
}
NODE* MEANDER_PLACER::CurrentNode( bool aLoopsRemoved ) const
{
if( !m_currentNode )
return m_world;
return m_currentNode;
}
bool MEANDER_PLACER::Start( const VECTOR2I& aP, ITEM* aStartItem )
{
VECTOR2I p;
if( !aStartItem || !aStartItem->OfKind( ITEM::SEGMENT_T ) )
{
Router()->SetFailureReason( _( "Please select a track whose length you want to tune." ) );
return false;
}
m_initialSegment = static_cast<SEGMENT*>( aStartItem );
p = m_initialSegment->Seg().NearestPoint( aP );
m_currentNode = NULL;
m_currentStart = p;
m_world = Router()->GetWorld()->Branch();
m_originLine = m_world->AssembleLine( m_initialSegment );
m_padToDieLenth = GetTotalPadToDieLength( m_originLine );
TOPOLOGY topo( m_world );
m_tunedPath = topo.AssembleTrivialPath( m_initialSegment );
m_world->Remove( m_originLine );
m_currentWidth = m_originLine.Width();
m_currentEnd = VECTOR2I( 0, 0 );
return true;
}
long long int MEANDER_PLACER::origPathLength() const
{
long long int total = m_padToDieLenth;
for( const ITEM* item : m_tunedPath.CItems() )
{
if( const LINE* l = dyn_cast<const LINE*>( item ) )
{
total += l->CLine().Length();
}
}
return total;
}
bool MEANDER_PLACER::Move( const VECTOR2I& aP, ITEM* aEndItem )
{
return doMove( aP, aEndItem, m_settings.m_targetLength );
}
bool MEANDER_PLACER::doMove( const VECTOR2I& aP, ITEM* aEndItem, long long int aTargetLength )
{
SHAPE_LINE_CHAIN pre, tuned, post;
if( m_currentNode )
delete m_currentNode;
m_currentNode = m_world->Branch();
cutTunedLine( m_originLine.CLine(), m_currentStart, aP, pre, tuned, post );
m_result = MEANDERED_LINE( this, false );
m_result.SetWidth( m_originLine.Width() );
m_result.SetBaselineOffset( 0 );
for( int i = 0; i < tuned.SegmentCount(); i++ )
{
const SEG s = tuned.CSegment( i );
m_result.AddCorner( s.A );
m_result.MeanderSegment( s );
m_result.AddCorner( s.B );
}
long long int lineLen = origPathLength();
m_lastLength = lineLen;
m_lastStatus = TUNED;
if( compareWithTolerance( lineLen, aTargetLength, m_settings.m_lengthTolerance ) > 0 )
{
m_lastStatus = TOO_LONG;
} else {
m_lastLength = lineLen - tuned.Length();
tuneLineLength( m_result, aTargetLength - lineLen );
}
for( const ITEM* item : m_tunedPath.CItems() )
{
if( const LINE* l = dyn_cast<const LINE*>( item ) )
{
Dbg()->AddLine( l->CLine(), 5, 30000 );
}
}
if( m_lastStatus != TOO_LONG )
{
tuned.Clear();
for( MEANDER_SHAPE* m : m_result.Meanders() )
{
if( m->Type() != MT_EMPTY )
{
tuned.Append ( m->CLine( 0 ) );
}
}
m_lastLength += tuned.Length();
int comp = compareWithTolerance( m_lastLength - aTargetLength, 0, m_settings.m_lengthTolerance );
if( comp > 0 )
m_lastStatus = TOO_LONG;
else if( comp < 0 )
m_lastStatus = TOO_SHORT;
else
m_lastStatus = TUNED;
}
m_finalShape.Clear();
m_finalShape.Append( pre );
m_finalShape.Append( tuned );
m_finalShape.Append( post );
m_finalShape.Simplify();
return true;
}
bool MEANDER_PLACER::FixRoute( const VECTOR2I& aP, ITEM* aEndItem, bool aForceFinish )
{
if( !m_currentNode )
return false;
m_currentTrace = LINE( m_originLine, m_finalShape );
m_currentNode->Add( m_currentTrace );
Router()->CommitRouting( m_currentNode );
return true;
}
bool MEANDER_PLACER::CheckFit( MEANDER_SHAPE* aShape )
{
LINE l( m_originLine, aShape->CLine( 0 ) );
if( m_currentNode->CheckColliding( &l ) )
return false;
int w = aShape->Width();
int clearance = w + m_settings.m_spacing;
return m_result.CheckSelfIntersections( aShape, clearance );
}
const ITEM_SET MEANDER_PLACER::Traces()
{
m_currentTrace = LINE( m_originLine, m_finalShape );
return ITEM_SET( &m_currentTrace );
}
const VECTOR2I& MEANDER_PLACER::CurrentEnd() const
{
return m_currentEnd;
}
int MEANDER_PLACER::CurrentLayer() const
{
return m_initialSegment->Layers().Start();
}
const wxString MEANDER_PLACER::TuningInfo( EDA_UNITS aUnits ) const
{
wxString status;
switch ( m_lastStatus )
{
case TOO_LONG:
status = _( "Too long: " );
break;
case TOO_SHORT:
status = _( "Too short: " );
break;
case TUNED:
status = _( "Tuned: " );
break;
default:
return _( "?" );
}
status += ::MessageTextFromValue( aUnits, m_lastLength, false );
status += "/";
status += ::MessageTextFromValue( aUnits, m_settings.m_targetLength, false );
return status;
}
MEANDER_PLACER::TUNING_STATUS MEANDER_PLACER::TuningStatus() const
{
return m_lastStatus;
}
}