kicad/3d-viewer/3d_rendering/3d_render_raytracing/shapes3D/ccylinder.cpp

191 lines
5.8 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file ccylinder.cpp
* @brief
*/
#include "3d_fastmath.h"
#include "ccylinder.h"
CVCYLINDER::CVCYLINDER( SFVEC2F aCenterPoint,
float aZmin,
float aZmax,
float aRadius ) : COBJECT( OBJ3D_CYLINDER )
{
m_center = aCenterPoint;
m_radius_squared = aRadius * aRadius;
m_inv_radius = 1.0f / aRadius;
m_bbox.Set( SFVEC3F( aCenterPoint.x - aRadius,
aCenterPoint.y - aRadius,
aZmin ),
SFVEC3F( aCenterPoint.x + aRadius,
aCenterPoint.y + aRadius,
aZmax ) );
m_bbox.ScaleNextUp();
m_centroid = m_bbox.GetCenter();
}
bool CVCYLINDER::Intersect( const RAY &aRay, HITINFO &aHitInfo ) const
{
// Based on:
// http://www.cs.utah.edu/~lha/Code%206620%20/Ray4/Cylinder.cpp
// Ray-sphere intersection: geometric
// /////////////////////////////////////////////////////////////////////////
const double OCx_Start = aRay.m_Origin.x - m_center.x;
const double OCy_Start = aRay.m_Origin.y - m_center.y;
const double p_dot_p = OCx_Start * OCx_Start + OCy_Start * OCy_Start;
const double a = (double)aRay.m_Dir.x * (double)aRay.m_Dir.x +
(double)aRay.m_Dir.y * (double)aRay.m_Dir.y;
const double b = (double)aRay.m_Dir.x * (double)OCx_Start +
(double)aRay.m_Dir.y * (double)OCy_Start;
const double c = p_dot_p - m_radius_squared;
const float delta = (float)(b * b - a * c);
bool hitResult = false;
if( delta > FLT_EPSILON )
{
const float inv_a = 1.0 / a;
const float sdelta = sqrtf( delta );
const float t = (-b - sdelta) * inv_a;
const float z = aRay.m_Origin.z + t * aRay.m_Dir.z;
if( (z >= m_bbox.Min().z) &&
(z <= m_bbox.Max().z) )
{
if( t < aHitInfo.m_tHit )
{
hitResult = true;
aHitInfo.m_tHit = t;
}
}
if( !hitResult )
{
const float t1 = (-b + sdelta) * inv_a;
const float z1 = aRay.m_Origin.z + t1 * aRay.m_Dir.z;
if( (z1 > m_bbox.Min().z ) &&
(z1 < m_bbox.Max().z ) )
{
if( t1 < aHitInfo.m_tHit )
{
hitResult = true;
aHitInfo.m_tHit = t1;
}
}
}
}
if( hitResult )
{
aHitInfo.m_HitPoint = aRay.at( aHitInfo.m_tHit );
const SFVEC2F hitPoint2D = SFVEC2F( aHitInfo.m_HitPoint.x,
aHitInfo.m_HitPoint.y );
aHitInfo.m_HitNormal = SFVEC3F( -(hitPoint2D.x - m_center.x) * m_inv_radius,
-(hitPoint2D.y - m_center.y) * m_inv_radius,
0.0f );
m_material->PerturbeNormal( aHitInfo.m_HitNormal, aRay, aHitInfo );
aHitInfo.pHitObject = this;
}
return hitResult;
}
bool CVCYLINDER::IntersectP(const RAY &aRay , float aMaxDistance ) const
{
// Based on:
// http://www.cs.utah.edu/~lha/Code%206620%20/Ray4/Cylinder.cpp
// Ray-sphere intersection: geometric
// /////////////////////////////////////////////////////////////////////////
const double OCx_Start = aRay.m_Origin.x - m_center.x;
const double OCy_Start = aRay.m_Origin.y - m_center.y;
const double p_dot_p = OCx_Start * OCx_Start + OCy_Start * OCy_Start;
const double a = (double)aRay.m_Dir.x * (double)aRay.m_Dir.x +
(double)aRay.m_Dir.y * (double)aRay.m_Dir.y;
const double b = (double)aRay.m_Dir.x * (double)OCx_Start +
(double)aRay.m_Dir.y * (double)OCy_Start;
const double c = p_dot_p - m_radius_squared;
const float delta = (float)(b * b - a * c);
if( delta > FLT_EPSILON )
{
const float inv_a = 1.0 / a;
const float sdelta = sqrtf( delta );
const float t = (-b - sdelta) * inv_a;
const float z = aRay.m_Origin.z + t * aRay.m_Dir.z;
if( (z >= m_bbox.Min().z) &&
(z <= m_bbox.Max().z) )
{
if( t < aMaxDistance )
return true;
}
const float t1 = (-b + sdelta) * inv_a;
const float z1 = aRay.m_Origin.z + t1 * aRay.m_Dir.z;
if( (z1 > m_bbox.Min().z ) &&
(z1 < m_bbox.Max().z ) )
{
if( t1 < aMaxDistance )
return true;
}
}
return false;
}
bool CVCYLINDER::Intersects( const CBBOX &aBBox ) const
{
// !TODO: improove
return m_bbox.Intersects( aBBox );
}
SFVEC3F CVCYLINDER::GetDiffuseColor( const HITINFO &aHitInfo ) const
{
(void)aHitInfo; // unused
return m_diffusecolor;
}