kicad/pcb_calculator/eserie.h

236 lines
8.9 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2020 <janvi@veith.net>
* Copyright (C) 2020-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
extern double DoubleFromString( const wxString& TextValue );
/**
* If BENCHMARK is defined, any 4R E12 calculations will print its execution time to console
* My Hasswell Enthusiast reports 225 mSec what are reproducible within plusminus 2 percent
*/
//#define BENCHMARK
/**
* E-Values derived from a geometric sequence formula by Charles Renard were already
* accepted and widely used before the ISO recommendation no. 3 has been published.
* For this historical reason, rounding rules of some values are sometimes irregular.
* Although all E-Values could be calculated at runtime, we initialize them in a lookup table
* what seems the most easy way to consider any inconvenient irregular rules. Same table is
* also used to lookup non calculable but readable BOM value strings. Supported E-series are:
*/
enum { E1, E3, E6, E12 };
/**
* This calculator suggests solutions for 2R, 3R and 4R replacement combinations
*/
enum { S2R, S3R, S4R };
/**
* 6 decade E-series values from 10 Ohms to 1M and its associated BOM strings.
* Series E3,E6,E12 are defined by additional values for cumulative use with previous series
*/
#define E1_VAL { true, "1K", 1000 },\
{ true, "10K", 10000 },\
{ true, "100K", 100000 },\
{ true, "10R", 10 },\
{ true, "100R", 100 },\
{ true, "1M", 1000000 }
#define E3_ADD { true, "22R", 22 },\
{ true, "47R", 47 },\
{ true, "220R", 220 },\
{ true, "470R", 470 },\
{ true, "2K2", 2200 },\
{ true, "4K7", 4700 },\
{ true, "22K", 22000 },\
{ true, "47K", 47000 },\
{ true, "220K", 220000 },\
{ true, "470K", 470000 }
#define E6_ADD { true, "15R", 15 },\
{ true, "33R", 33 },\
{ true, "68R", 68 },\
{ true, "150R", 150 },\
{ true, "330R", 330 },\
{ true, "680R", 680 },\
{ true, "1K5", 1500 },\
{ true, "3K3", 3300 },\
{ true, "6K8", 6800 },\
{ true, "15K", 15000 },\
{ true, "33K", 33000 },\
{ true, "68K", 68000 },\
{ true, "150K", 150000 },\
{ true, "330K", 330000 },\
{ true, "680K", 680000 }
#define E12_ADD { true, "12R", 12 },\
{ true, "18R", 18 },\
{ true, "27R", 27 },\
{ true, "39R", 39 },\
{ true, "56R", 56 },\
{ true, "82R", 82 },\
{ true, "120R", 120 },\
{ true, "180R", 180 },\
{ true, "270R", 270 },\
{ true, "390R", 390 },\
{ true, "560R", 560 },\
{ true, "820R", 820 },\
{ true, "1K2", 1200 },\
{ true, "1K8", 1800 },\
{ true, "2K7", 2700 },\
{ true, "3K9", 3900 },\
{ true, "5K6", 5600 },\
{ true, "8K2", 8200 },\
{ true, "12K", 12000 },\
{ true, "18K", 18000 },\
{ true, "27K", 27000 },\
{ true, "39K", 39000 },\
{ true, "56K", 56000 },\
{ true, "82K", 82000 },\
{ true, "120K", 120000 },\
{ true, "180K", 180000 },\
{ true, "270K", 270000 },\
{ true, "390K", 390000 },\
{ true, "560K", 560000 },\
{ true, "820K", 820000 }
struct r_data {
bool e_use;
std::string e_name;
double e_value;
};
class eserie
{
public:
/**
* If any value of the selected E-serie not available, it can be entered as an exclude value.
*
* @param aValue is the value to exclude from calculation
* Values to exclude are set to false in the selected E-serie source lookup table
*/
void Exclude( double aValue );
/**
* initialize next calculation and erase results from previous calculation
*/
void NewCalc( void );
/**
* called on calculate button to execute all the 2R, 3R and 4R calculations
*/
void Calculate( void );
/**
* Interface for CheckBox, RadioButton, RequriedResistor and calculated Results
*/
void SetSeries( uint32_t aSeries ) { m_series = aSeries; }
void SetRequiredValue( double aValue ) { m_required_value = aValue; }
std::array<r_data,S4R+1> get_rslt( void ) { return m_results; }
private:
/**
* Build all 2R combinations from the selected E-serie values
*
* Pre-calculated value combinations are saved in intermediate look up table m_cmb_lut
* @return is the number of found combinations what also depends from exclude values
*/
uint32_t combine2( void );
/**
* Search for closest two component solution
*
* @param aSize is the number of valid 2R combinations in m_cmb_lut on where to search
* The 2R result with smallest deviation will be saved in results
*/
void simple_solution( uint32_t aSize );
/**
* Check if there is a better 3 R solution than previous one using only two components.
*
* @param aSize gives the number of available combinations to be checked inside m_cmb_lut
* Therefore m_cmb_lut is combinated with the primary E-serie look up table
* The 3R result with smallest deviation will be saved in results if better than 2R
*/
void combine3( uint32_t aSize );
/**
* Check if there is a better four component solution.
*
* @param aSsize gives the number of 2R combinations to be checked inside m_cmb_lut
* Occupied calculation time depends from number of available E-serie values
* with the power of 4 why execution for E12 is conditional with 4R check box
* for the case the previously found 3R solution is already exact
*/
void combine4( uint32_t aSize );
/*
* Strip redundant braces from three component result
*
* Example: R1+(R2+R3) become R1+R2+R3
* and R1|(R2|R3) become R1|R2|R3
* while R1+(R2|R3) or (R1+R2)|R3) remains untouched
*/
void strip3( void );
/*
* Strip redundant braces from four component result
*
* Example: (R1+R2)+(R3+R4) become R1+R2+R3+R4
* and (R1|R2)|(R2|R3) become R1|R2|R3|R4
* while (R1+R2)|(R3+R4) remains untouched
*/
void strip4( void );
private:
std::vector<std::vector<r_data>> luts {
{ E1_VAL },
{ E1_VAL, E3_ADD },
{ E1_VAL, E3_ADD, E6_ADD },
{ E1_VAL, E3_ADD, E6_ADD, E12_ADD }
};
/*
* TODO: Manual array size calculation is dangerous. Unlike legacy ANSI-C Arrays
* std::array can not drop length param by providing aggregate init list up
* to C++17. Reserved array size should be 2*E12² of std::vector primary list.
* Exceeding memory limit 7442 will crash the calculator without any warnings !
* Compare to previous MAX_COMB macro for legacy ANSI-C array automatic solution
* #define E12_SIZE sizeof ( e12_lut ) / sizeof ( r_data )
* #define MAX_COMB (2 * E12_SIZE * E12_SIZE)
* 2 component combinations including redundant swappable terms are for the moment
* 72 combinations for E1
* 512 combinations for E3
* 1922 combinations for E6
* 7442 combinations for E12
*/
#define MAX_CMB 7442 // maximum combinations for E12
std::array<r_data, MAX_CMB> m_cmb_lut; // intermediate 2R combinations
std::array<r_data, S4R+1> m_results; // 2R, 3R and 4R results
uint32_t m_series = E6; // Radio Button State
uint32_t m_enable_4R = false; // Check Box 4R enable
double m_required_value =0.0; // required Resistor
};