kicad/eeschema/sim/sim_model_ngspice_data_bjt.cpp

238 lines
44 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2022 Mikolaj Wielgus
* Copyright (C) 2023 KiCad Developers, see AUTHORS.TXT for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <sim/sim_model_ngspice.h>
void NGSPICE_MODEL_INFO_MAP::addBJT()
{
modelInfos[MODEL_TYPE::BJT] = { "BJT", "NPN", "PNP", { "C", "B", "E", "<S>" }, "Bipolar Junction Transistor", {}, {} };
// Model parameters
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "type", 309, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "npn", "pnp", "NPN or PNP" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "npn", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "NPN type device" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "pnp", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "PNP type device" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "subs", 204, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::DC, "-1721368256", "-514428616", "Vertical or Lateral device" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tnom", 151, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "27", "27", "Parameter measurement temperature" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tref", 151, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "27", "27", "n.a." );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "is_", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-16", "1e-16", "Saturation Current" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ibe", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Base-Emitter saturation Current" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ibc", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Base-Collector saturation Current" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "bf", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "100", "100", "Ideal forward beta" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "nf", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Forward emission coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vaf", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward Early voltage" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "va", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ikf", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward beta roll-off corner current" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ik", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ise", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-E leakage saturation current" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "c2", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ne", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1.5", "1.5", "B-E leakage emission coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "br", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ideal reverse beta" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "nr", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Reverse emission coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "var", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Reverse Early voltage" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vb", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ikr", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "reverse beta roll-off corner current" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "isc", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-C leakage saturation current" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "c4", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "nc", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "B-C leakage emission coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "rb", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Zero bias base resistance" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "irb", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Current for base resistance=(rb+rbm)/2" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "rbm", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Minimum base resistance" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "re", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Emitter resistance" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "rc", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Collector resistance" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "cje", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias B-E depletion capacitance" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vje", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "B-E built in potential" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "pe", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.75", "0.75", "B-E built in potential" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "mje", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "B-E junction grading coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "me", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.33", "0.33", "B-E junction grading coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tf", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal forward transit time" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "xtf", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Coefficient for bias dependence of TF" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vtf", 128, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Voltage giving VBC dependence of TF" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "itf", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "High current dependence of TF" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ptf", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "deg", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Excess phase" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "cjc", 131, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias B-C depletion capacitance" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vjc", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "B-C built in potential" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "pc", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.75", "0.75", "B-C built in potential" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "mjc", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "B-C junction grading coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "mc", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.33", "0.33", "B-C junction grading coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "xcjc", 134, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Fraction of B-C cap to internal base" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tr", 135, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal reverse transit time" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "cjs", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias Substrate capacitance" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "csub_", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Zero bias Substrate capacitance" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ccs", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Zero bias Substrate capacitance" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vjs", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "Substrate junction built in potential" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ps", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.75", "0.75", "Substrate junction built in potential" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "mjs", 138, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Substrate junction grading coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ms", 138, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Substrate junction grading coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "xtb", 139, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward and reverse beta temp. exp." );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "eg", 140, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.11", "1.11", "Energy gap for IS temp. dependency" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "xti", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "3", "3", "Temp. exponent for IS" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "fc", 142, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Forward bias junction fit parameter" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "kf", 144, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flicker Noise Coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "af", 143, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flicker Noise Exponent" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "invearlyvoltf", 301, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Inverse early voltage:forward" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "invearlyvoltr", 302, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Inverse early voltage:reverse" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "invrollofff", 303, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Inverse roll off - forward" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "invrolloffr", 304, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Inverse roll off - reverse" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "collectorconduct", 305, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Collector conductance" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "emitterconduct", 306, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Emitter conductance" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "transtimevbcfact", 307, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Transit time VBC factor" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "excessphasefactor", 308, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "deg", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Excess phase fact." );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "iss", 145, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Substrate Jct. Saturation Current" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ns", 146, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Substrate current emission coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "rco", 147, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0.01", "0.01", "Intrinsic coll. resistance" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vo", 148, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "10", "10", "Epi drift saturation voltage" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "gamma", 149, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1e-11", "1e-11", "Epi doping parameter" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "qco", 150, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "C", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Epi Charge parameter" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tlev", 152, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature equation selector" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tlevc", 153, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature equation selector" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tbf1", 154, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "BF 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tbf2", 155, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "BF 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tbr1", 156, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "BR 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tbr2", 157, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "BR 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tikf1", 158, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IKF 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tikf2", 159, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IKF 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tikr1", 160, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IKR 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tikr2", 161, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IKR 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tirb1", 162, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IRB 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tirb2", 163, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IRB 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tnc1", 164, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NC 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tnc2", 165, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NC 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tne1", 166, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NE 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tne2", 167, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NE 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tnf1", 168, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NF 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tnf2", 169, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NF 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tnr1", 170, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NR 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tnr2", 171, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NR 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trb1", 172, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RB 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trb", 172, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trb2", 173, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RB 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trc1", 174, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RC 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trc", 174, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trc2", 175, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RC 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tre1", 176, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RE 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tre", 176, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tre2", 177, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RE 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trm1", 178, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RBM 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trm2", 179, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RBM 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tvaf1", 180, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "VAF 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tvaf2", 181, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "VAF 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tvar1", 182, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "VAR 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tvar2", 183, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "VAR 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ctc", 184, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "CJC temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "cte", 185, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "CJE temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "cts", 186, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "CJS temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tvjc", 187, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "VJC temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tvje", 188, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "VJE temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tvjs", 189, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "VJS temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "titf1", 190, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ITF 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "titf2", 191, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ITF 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ttf1", 192, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "TF 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ttf2", 193, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "TF 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ttr1", 194, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "TR 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ttr2", 195, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "TR 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tmje1", 196, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "MJE 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tmje2", 197, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "MJE 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tmjc1", 198, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "MJC 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tmjc2", 199, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "MJC 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tmjs1", 200, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "MJS 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tmjs2", 201, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "MJS 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tns1", 202, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NS 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tns2", 203, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NS 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "nkf", 205, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "NKF High current beta rolloff exponent" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "nk", 205, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.5", "0.5", "n.a." );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tis1", 206, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IS 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tis2", 207, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IS 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tise1", 208, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ISE 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tise2", 209, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ISE 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tisc1", 210, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ISC 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tisc2", 211, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ISC 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tiss1", 212, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ISS 1. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tiss2", 213, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ISS 2. temperature coefficient" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "quasimod", 214, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature equation selector" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vg", 215, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.206", "1.206", "Energy gap for QS temp. dependency" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "cn", 216, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "2.42", "2.2", "Temperature exponent of RCI" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "d", 217, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0.87", "0.52", "Temperature exponent of VO" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vbe_max", 218, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage B-E junction" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vbc_max", 219, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage B-C junction" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vce_max", 220, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage C-E branch" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "pd_max", 221, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum device power dissipation" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ic_max", 222, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum collector current" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ib_max", 223, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum base current" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "te_max", 224, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum temperature" );
modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "rth0", 225, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "thermal resistance juntion to ambient" );
// Instance parameters
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "off", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device initially off", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "icvbe", 3, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial B-E voltage", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "icvce", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial C-E voltage", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "m", 9, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Parallel Multiplier", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "area", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "(Emitter) Area factor", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "areab", 10, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Base area factor", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "areac", 11, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Collector area factor", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "ic", 5, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_FLOAT_VECTOR, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial condition vector", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "sens_area", 6, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "flag to request sensitivity WRT area", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "colnode", 212, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of collector node", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "basenode", 213, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of base node", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "emitnode", 214, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of emitter node", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "substnode", 215, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of substrate node", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "colprimenode", 217, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal collector node", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "baseprimenode", 218, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base node", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "emitprimenode", 219, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal emitter node", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "ic", 222, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Current at collector node", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "ib", 223, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Current at base node", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "ie", 247, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Emitter current", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "is", 248, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1e-16", "1e-16", "Substrate current", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "vbe", 220, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-E voltage", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "vbc", 221, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-C voltage", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "gm", 226, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal transconductance", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "gpi", 224, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal input conductance - pi", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "gmu", 225, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal conductance - mu", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "gx", 236, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance from base to internal base", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "go", 227, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal output conductance", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "geqcb", 238, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "d(Ibe)/d(Vbc)", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "gcsub", 239, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal Subs. cap. equiv. cond.", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "gdsub", 254, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal Subs. Diode equiv. cond.", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "geqbx", 240, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal C-B-base cap. equiv. cond.", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cpi", 250, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base to emitter capacitance", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cmu", 251, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base to collector capacitance", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cbx", 252, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Base to collector capacitance", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "csub", 253, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Substrate capacitance", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cqbe", 229, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-E jct.", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cqbc", 231, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-C jct.", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cqsub", 233, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in Subs. jct.", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cqbx", 235, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-X jct.", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cexbc", 237, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Total Capacitance in B-X junction", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "qbe", 228, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-E junction", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "qbc", 230, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-C junction", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "qsub", 232, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage Subs. junction", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "qbx", 234, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-X junction", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "p", 249, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Power dissipation", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "sens_dc", 246, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "dc sensitivity", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "sens_real", 241, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "real part of ac sensitivity", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "sens_imag", 242, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "dc sens. & imag part of ac sens.", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "sens_mag", 243, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity of ac magnitude", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "sens_ph", 244, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity of ac phase", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "sens_cplx", 245, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_COMPLEX, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "ac sensitivity", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "temp", 7, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "instance temperature", true );
modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "dtemp", 8, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "instance temperature delta from circuit", true );
}