kicad/libs/kimath/include/geometry/shape.h

359 lines
12 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013 CERN
* Copyright (C) 2021-2022 KiCad Developers, see AUTHORS.txt for contributors.
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef __SHAPE_H
#define __SHAPE_H
#include <sstream>
#include <vector>
#include <geometry/seg.h>
#include <geometry/eda_angle.h>
#include <geometry/geometry_utils.h>
#include <math/vector2d.h>
#include <math/box2.h>
#include <wx/string.h>
class SHAPE_LINE_CHAIN;
class SHAPE_POLY_SET;
/**
* Lists all supported shapes.
*/
enum SHAPE_TYPE
{
SH_RECT = 0, ///< axis-aligned rectangle
SH_SEGMENT, ///< line segment
SH_LINE_CHAIN, ///< line chain (polyline)
SH_CIRCLE, ///< circle
SH_SIMPLE, ///< simple polygon
SH_POLY_SET, ///< set of polygons (with holes, etc.)
SH_COMPOUND, ///< compound shape, consisting of multiple simple shapes
SH_ARC, ///< circular arc
SH_NULL, ///< empty shape (no shape...),
SH_POLY_SET_TRIANGLE ///< a single triangle belonging to a POLY_SET triangulation
};
static inline wxString SHAPE_TYPE_asString( SHAPE_TYPE a )
{
switch( a )
{
case SH_RECT: return wxT( "SH_RECT" );
case SH_SEGMENT: return wxT( "SH_SEGMENT" );
case SH_LINE_CHAIN: return wxT( "SH_LINE_CHAIN" );
case SH_CIRCLE: return wxT( "SH_CIRCLE" );
case SH_SIMPLE: return wxT( "SH_SIMPLE" );
case SH_POLY_SET: return wxT( "SH_POLY_SET" );
case SH_COMPOUND: return wxT( "SH_COMPOUND" );
case SH_ARC: return wxT( "SH_ARC" );
case SH_NULL: return wxT( "SH_NULL" );
case SH_POLY_SET_TRIANGLE: return wxT( "SH_POLY_SET_TRIANGLE" );
}
return wxEmptyString; // Just to quiet GCC.
}
class SHAPE;
class SHAPE_BASE
{
public:
/**
* Create an empty shape of type aType
*/
SHAPE_BASE( SHAPE_TYPE aType ) :
m_type( aType )
{}
virtual ~SHAPE_BASE()
{}
/**
* Return the type of the shape.
*
* @retval the type
*/
SHAPE_TYPE Type() const
{
return m_type;
}
wxString TypeName() const
{
return SHAPE_TYPE_asString( m_type );
}
virtual bool HasIndexableSubshapes() const
{
return false;
}
virtual size_t GetIndexableSubshapeCount() const { return 0; }
virtual void GetIndexableSubshapes( std::vector<const SHAPE*>& aSubshapes ) const { }
protected:
///< type of our shape
SHAPE_TYPE m_type;
};
/**
* An abstract shape on 2D plane.
*/
class SHAPE : public SHAPE_BASE
{
public:
/**
* This is the minimum precision for all the points in a shape.
*/
static const int MIN_PRECISION_IU = 4;
/**
* Create an empty shape of type \a aType.
*/
SHAPE( SHAPE_TYPE aType ) :
SHAPE_BASE( aType )
{}
virtual ~SHAPE()
{}
/**
* Return a dynamically allocated copy of the shape.
*
* @retval copy of the shape
*/
virtual SHAPE* Clone() const
{
assert( false );
return nullptr;
};
/**
* Return the actual minimum distance between two shapes
*
* @retval distance in IU
*/
int GetClearance( const SHAPE* aOther ) const;
/**
* Return true if the shape is a null shape.
*
* @retval true if null :-)
*/
bool IsNull() const
{
return m_type == SH_NULL;
}
/**
* Check if the boundary of shape (this) lies closer to the point \a aP than \a aClearance,
* indicating a collision.
*
* @param aActual [out] an optional pointer to an int to store the actual distance in the
* event of a collision.
* @param aLocation [out] an option pointer to a point to store a nearby location in the
* event of a collision.
* @return true, if there is a collision.
*/
virtual bool Collide( const VECTOR2I& aP, int aClearance = 0, int* aActual = nullptr,
VECTOR2I* aLocation = nullptr ) const
{
return Collide( SEG( aP, aP ), aClearance, aActual, aLocation );
}
/**
* Check if the boundary of shape (this) lies closer to the shape \a aShape than \a aClearance,
* indicating a collision.
*
* @param aShape shape to check collision against
* @param aClearance minimum clearance
* @param aMTV [out] minimum translation vector
* @param aActual [out] an optional pointer to an int to store the actual distance in the
* event of a collision.
* @param aLocation [out] an option pointer to a point to store a nearby location in the
* event of a collision.
* @return true, if there is a collision.
*/
virtual bool Collide( const SHAPE* aShape, int aClearance, VECTOR2I* aMTV ) const;
virtual bool Collide( const SHAPE* aShape, int aClearance = 0, int* aActual = nullptr,
VECTOR2I* aLocation = nullptr ) const;
/**
* Check if the boundary of shape (this) lies closer to the segment \a aSeg than \a aClearance,
* indicating a collision.
*
* @param aActual [out] an optional pointer to an int to be updated with the actual distance
* int the event of a collision.
* @param aLocation [out] an option pointer to a point to store a nearby location in the
* event of a collision.
* @return true, if there is a collision.
*/
virtual bool Collide( const SEG& aSeg, int aClearance = 0, int* aActual = nullptr,
VECTOR2I* aLocation = nullptr ) const = 0;
/**
* Compute a bounding box of the shape, with a margin of \a aClearance a collision.
*
* @param aClearance how much the bounding box is expanded wrs to the minimum enclosing
* rectangle for the shape.
* @return the bounding box.
*/
virtual const BOX2I BBox( int aClearance = 0 ) const = 0;
/**
* Compute a center-of-mass of the shape.
*
* @return the center-of-mass point
*/
virtual VECTOR2I Centre() const
{
return BBox( 0 ).Centre(); // if nothing better is available....
}
/**
* Returns the minimum distance from a given point to this shape.
* Always returns zero if the point is inside a closed shape and aOutlineOnly is false.
*
* @param aP is the point to test
* @return the distance from the shape to aP
*/
virtual int Distance( const VECTOR2I& aP ) const;
/**
* @see SHAPE::Distance
*/
virtual SEG::ecoord SquaredDistance( const VECTOR2I& aP, bool aOutlineOnly = false ) const;
/**
* Check if point \a aP lies inside a closed shape. Always returns false if this shape is not closed.
*
* @param aPt point to check
* @param aUseBBoxCache gives better performance if the bounding box caches have been
* generated.
* @return true if the point is inside the shape (edge is not treated as being inside).
*/
virtual bool PointInside( const VECTOR2I& aPt, int aAccuracy = 0, bool aUseBBoxCache = false ) const;
/**
* Fills a SHAPE_POLY_SET with a polygon representation of this shape.
* @param aBuffer [out] will be filled with the polygonal representation of this shape.
* @param aError controls the maximum allowed deviation when converting rounded shapes to segments
* @param aErrorLoc controls where the error is placed when approximating rounded shapes
*/
virtual void TransformToPolygon( SHAPE_POLY_SET& aBuffer, int aError, ERROR_LOC aErrorLoc ) const = 0;
/**
* @param aCenter is the rotation center.
* @param aAngle rotation angle.
*/
virtual void Rotate( const EDA_ANGLE& aAngle, const VECTOR2I& aCenter = { 0, 0 } ) = 0;
virtual void Move( const VECTOR2I& aVector ) = 0;
virtual bool IsSolid() const = 0;
virtual bool Parse( std::stringstream& aStream );
virtual const std::string Format( bool aCplusPlus = true ) const;
protected:
typedef VECTOR2I::extended_type ecoord;
};
class SHAPE_LINE_CHAIN_BASE : public SHAPE
{
public:
SHAPE_LINE_CHAIN_BASE( SHAPE_TYPE aType ) :
SHAPE( aType )
{
}
virtual ~SHAPE_LINE_CHAIN_BASE()
{
}
/**
* Check if point \a aP lies closer to us than \a aClearance.
*
* @param aP the point to check for collisions with
* @param aClearance minimum distance that does not qualify as a collision.
* @param aActual an optional pointer to an int to store the actual distance in the event
* of a collision.
* @return true, when a collision has been found
*/
virtual bool Collide( const VECTOR2I& aP, int aClearance = 0, int* aActual = nullptr,
VECTOR2I* aLocation = nullptr ) const override;
/**
* Check if segment \a aSeg lies closer to us than \a aClearance.
*
* @param aSeg the segment to check for collisions with
* @param aClearance minimum distance that does not qualify as a collision.
* @param aActual an optional pointer to an int to store the actual distance in the event
* of a collision.
* @return true, when a collision has been found
*/
virtual bool Collide( const SEG& aSeg, int aClearance = 0, int* aActual = nullptr,
VECTOR2I* aLocation = nullptr ) const override;
SEG::ecoord SquaredDistance( const VECTOR2I& aP, bool aOutlineOnly = false ) const override;
bool PointInside( const VECTOR2I& aPt, int aAccuracy = 0, bool aUseBBoxCache = false ) const override;
/**
* Check if point \a aP lies on an edge or vertex of the line chain.
*
* @param aP point to check
* @return true if the point lies on the edge.
*/
bool PointOnEdge( const VECTOR2I& aP, int aAccuracy = 0 ) const;
/**
* Check if point \a aP lies on an edge or vertex of the line chain.
*
* @param aP point to check
* @return index of the first edge containing the point, otherwise negative
*/
int EdgeContainingPoint( const VECTOR2I& aP, int aAccuracy = 0 ) const;
virtual const VECTOR2I GetPoint( int aIndex ) const = 0;
virtual const SEG GetSegment( int aIndex ) const = 0;
virtual size_t GetPointCount() const = 0;
virtual size_t GetSegmentCount() const = 0;
virtual bool IsClosed() const = 0;
virtual BOX2I* GetCachedBBox() const { return nullptr; }
void TransformToPolygon( SHAPE_POLY_SET& aBuffer, int aError,
ERROR_LOC aErrorLoc ) const override
{}
};
#endif // __SHAPE_H