kicad/eeschema/sim/sim_plot_panel.cpp

652 lines
16 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2016 CERN
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* https://www.gnu.org/licenses/gpl-3.0.html
* or you may search the http://www.gnu.org website for the version 3 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "sim_plot_panel.h"
#include <algorithm>
#include <limits>
static wxString formatFloat( double x, int nDigits )
{
wxString rv, fmt;
if( nDigits )
{
fmt = wxT( "%.0Nf" );
fmt[3] = '0' + nDigits;
}
else
{
fmt = wxT( "%.0f" );
}
rv.Printf( fmt, x );
return rv;
}
static void getSISuffix( double x, const wxString& unit, int& power, wxString& suffix )
{
const int n_powers = 11;
const struct
{
double exponent;
char suffix;
} powers[] =
{
{ -18, 'a' },
{ -15, 'f' },
{ -12, 'p' },
{ -9, 'n' },
{ -6, 'u' },
{ -3, 'm' },
{ 0, 0 },
{ 3, 'k' },
{ 6, 'M' },
{ 9, 'G' },
{ 12, 'T' },
{ 14, 'P' }
};
power = 0;
suffix = unit;
if( x == 0.0 )
return;
for( int i = 0; i < n_powers - 1; i++ )
{
double r_cur = pow( 10, powers[i].exponent );
if( fabs( x ) >= r_cur && fabs( x ) < r_cur * 1000.0 )
{
power = powers[i].exponent;
if( powers[i].suffix )
suffix = wxString( powers[i].suffix ) + unit;
else
suffix = unit;
return;
}
}
}
static int countDecimalDigits( double x, int maxDigits )
{
int64_t k = (int)( ( x - floor( x ) ) * pow( 10.0, (double) maxDigits ) );
int n = 0;
while( k && ( ( k % 10LL ) == 0LL || ( k % 10LL ) == 9LL ) )
{
k /= 10LL;
}
n = 0;
while( k != 0LL )
{
n++;
k /= 10LL;
}
return n;
}
static void formatSILabels( mpScaleBase* scale, const wxString& aUnit, int nDigits )
{
double maxVis = scale->AbsVisibleMaxValue();
wxString suffix;
int power, digits = 0;
getSISuffix( maxVis, aUnit, power, suffix );
double sf = pow( 10.0, power );
for( auto &l : scale->TickLabels() )
{
int k = countDecimalDigits( l.pos / sf, nDigits );
digits = std::max( digits, k );
}
for( auto &l : scale->TickLabels() )
{
l.label = formatFloat ( l.pos / sf, digits ) + suffix;
l.visible = true;
}
}
class FREQUENCY_LOG_SCALE : public mpScaleXLog
{
public:
FREQUENCY_LOG_SCALE( wxString name, int flags ) :
mpScaleXLog( name, flags ) {};
void formatLabels() override
{
const wxString unit = wxT( "Hz" );
wxString suffix;
int power;
for( auto &l : TickLabels() )
{
getSISuffix( l.pos, unit, power, suffix );
double sf = pow( 10.0, power );
int k = countDecimalDigits( l.pos / sf, 3 );
l.label = formatFloat( l.pos / sf, k ) + suffix;
l.visible = true;
}
}
};
class FREQUENCY_LIN_SCALE : public mpScaleX
{
public:
FREQUENCY_LIN_SCALE( wxString name, int flags ) :
mpScaleX( name, flags, false , 0 ) {};
void formatLabels() override
{
formatSILabels( this, wxT( "Hz" ), 3 );
}
};
class TIME_SCALE : public mpScaleX
{
public:
TIME_SCALE( wxString name, int flags ) :
mpScaleX( name, flags, false, 0 ) {};
void formatLabels() override
{
formatSILabels( this, wxT( "s" ), 3 );
}
};
class VOLTAGE_SCALE_X : public mpScaleX
{
public:
VOLTAGE_SCALE_X( wxString name, int flags ) :
mpScaleX( name, flags, false, 0 ) {};
void formatLabels() override
{
formatSILabels( this, wxT( "V" ), 3 );
}
};
class GAIN_SCALE : public mpScaleY
{
public:
GAIN_SCALE( wxString name, int flags ) :
mpScaleY( name, flags, false ) {};
void formatLabels() override
{
formatSILabels( this, wxT( "dB" ), 3 );
}
};
class PHASE_SCALE : public mpScaleY
{
public:
PHASE_SCALE( wxString name, int flags ) :
mpScaleY( name, flags, false ) {};
void formatLabels() override
{
formatSILabels( this, wxT( "\u00B0" ), 3 ); // degree sign
}
};
class VOLTAGE_SCALE_Y : public mpScaleY
{
public:
VOLTAGE_SCALE_Y( wxString name, int flags ) :
mpScaleY( name, flags, false ) {};
void formatLabels() override
{
formatSILabels( this, wxT( "V" ), 3 );
}
};
class CURRENT_SCALE : public mpScaleY
{
public:
CURRENT_SCALE( wxString name, int flags ) :
mpScaleY( name, flags, false ) {};
void formatLabels() override
{
formatSILabels( this, wxT( "A" ), 3 );
}
};
void CURSOR::Plot( wxDC& aDC, mpWindow& aWindow )
{
if( !m_window )
m_window = &aWindow;
if( !m_visible )
return;
const auto& dataX = m_trace->GetDataX();
const auto& dataY = m_trace->GetDataY();
if( dataX.size() <= 1 )
return;
if( m_updateRequired )
{
m_coords.x = m_trace->s2x( aWindow.p2x( m_dim.x ) );
// Find the closest point coordinates
auto maxXIt = std::upper_bound( dataX.begin(), dataX.end(), m_coords.x );
int maxIdx = maxXIt - dataX.begin();
int minIdx = maxIdx - 1;
// Out of bounds checks
if( minIdx < 0 )
{
minIdx = 0;
maxIdx = 1;
m_coords.x = dataX[0];
}
else if( maxIdx >= (int) dataX.size() )
{
maxIdx = dataX.size() - 1;
minIdx = maxIdx - 1;
m_coords.x = dataX[maxIdx];
}
const double leftX = dataX[minIdx];
const double rightX = dataX[maxIdx];
const double leftY = dataY[minIdx];
const double rightY = dataY[maxIdx];
// Linear interpolation
m_coords.y = leftY + ( rightY - leftY ) / ( rightX - leftX ) * ( m_coords.x - leftX );
m_updateRequired = false;
// Notify the parent window about the changes
wxQueueEvent( aWindow.GetParent(), new wxCommandEvent( EVT_SIM_CURSOR_UPDATE ) );
}
else
{
m_updateRef = true;
}
if( m_updateRef )
{
UpdateReference();
m_updateRef = false;
}
// Line length in horizontal and vertical dimensions
const wxPoint cursorPos( aWindow.x2p( m_trace->x2s( m_coords.x ) ),
aWindow.y2p( m_trace->y2s( m_coords.y ) ) );
wxCoord leftPx = m_drawOutsideMargins ? 0 : aWindow.GetMarginLeft();
wxCoord rightPx = m_drawOutsideMargins ? aWindow.GetScrX() : aWindow.GetScrX() - aWindow.GetMarginRight();
wxCoord topPx = m_drawOutsideMargins ? 0 : aWindow.GetMarginTop();
wxCoord bottomPx = m_drawOutsideMargins ? aWindow.GetScrY() : aWindow.GetScrY() - aWindow.GetMarginBottom();
aDC.SetPen( wxPen( *wxWHITE, 1, m_continuous ? wxPENSTYLE_SOLID : wxPENSTYLE_LONG_DASH ) );
if( topPx < cursorPos.y && cursorPos.y < bottomPx )
aDC.DrawLine( leftPx, cursorPos.y, rightPx, cursorPos.y );
if( leftPx < cursorPos.x && cursorPos.x < rightPx )
aDC.DrawLine( cursorPos.x, topPx, cursorPos.x, bottomPx );
}
bool CURSOR::Inside( wxPoint& aPoint )
{
if( !m_window )
return false;
return ( std::abs( (double) aPoint.x - m_window->x2p( m_trace->x2s( m_coords.x ) ) ) <= DRAG_MARGIN )
|| ( std::abs( (double) aPoint.y - m_window->y2p( m_trace->y2s( m_coords.y ) ) ) <= DRAG_MARGIN );
}
void CURSOR::UpdateReference()
{
if( !m_window )
return;
m_reference.x = m_window->x2p( m_trace->x2s( m_coords.x ) );
m_reference.y = m_window->y2p( m_trace->y2s( m_coords.y ) );
}
SIM_PLOT_PANEL::SIM_PLOT_PANEL( SIM_TYPE aType, wxWindow* parent, wxWindowID id, const wxPoint& pos,
const wxSize& size, long style, const wxString& name )
: mpWindow( parent, id, pos, size, style ), m_colorIdx( 0 ),
m_axis_x( nullptr ), m_axis_y1( nullptr ), m_axis_y2( nullptr ), m_type( aType )
{
LimitView( true );
SetMargins( 50, 80, 50, 80 );
wxColour grey( 96, 96, 96 );
SetColourTheme( *wxBLACK, *wxWHITE, grey );
EnableDoubleBuffer( true );
UpdateAll();
switch( m_type )
{
case ST_AC:
m_axis_x = new FREQUENCY_LOG_SCALE( wxT( "Frequency" ), mpALIGN_BOTTOM );
m_axis_y1 = new GAIN_SCALE( wxT( "Gain" ), mpALIGN_LEFT );
m_axis_y2 = new PHASE_SCALE( wxT( "Phase" ), mpALIGN_RIGHT );
m_axis_y2->SetMasterScale( m_axis_y1 );
break;
case ST_DC:
m_axis_x = new VOLTAGE_SCALE_X( wxT( "Voltage (sweeped)" ), mpALIGN_BOTTOM );
m_axis_y1 = new VOLTAGE_SCALE_Y( wxT( "Voltage (measured)" ), mpALIGN_LEFT );
m_axis_y2 = new CURRENT_SCALE( wxT( "Current" ), mpALIGN_RIGHT );
break;
case ST_NOISE:
m_axis_x = new FREQUENCY_LOG_SCALE( wxT( "Frequency" ), mpALIGN_BOTTOM );
m_axis_y1 = new mpScaleY( wxT( "noise [(V or A)^2/Hz]" ), mpALIGN_LEFT );
break;
case ST_TRANSIENT:
m_axis_x = new TIME_SCALE( wxT( "Time" ), mpALIGN_BOTTOM );
m_axis_y1 = new VOLTAGE_SCALE_Y( wxT( "Voltage" ), mpALIGN_LEFT );
m_axis_y2 = new CURRENT_SCALE( wxT( "Current" ), mpALIGN_RIGHT );
m_axis_y2->SetMasterScale( m_axis_y1 );
break;
default:
// suppress warnings
break;
}
if( m_axis_x )
{
m_axis_x->SetTicks( false );
m_axis_x->SetNameAlign ( mpALIGN_BOTTOM );
AddLayer( m_axis_x );
}
if( m_axis_y1 )
{
m_axis_y1->SetTicks( false );
m_axis_y1->SetNameAlign ( mpALIGN_LEFT );
AddLayer( m_axis_y1 );
}
if( m_axis_y2 )
{
m_axis_y2->SetTicks( false );
m_axis_y2->SetNameAlign ( mpALIGN_RIGHT );
AddLayer( m_axis_y2 );
}
m_legend = new mpInfoLegend( wxRect( 0, 40, 200, 40 ), wxTRANSPARENT_BRUSH );
m_legend->SetVisible( false );
AddLayer( m_legend );
m_topLevel.push_back( m_legend );
SetColourTheme( *wxBLACK, *wxWHITE, grey );
EnableDoubleBuffer( true );
UpdateAll();
}
SIM_PLOT_PANEL::~SIM_PLOT_PANEL()
{
// ~mpWindow destroys all the added layers, so there is no need to destroy m_traces contents
}
bool SIM_PLOT_PANEL::IsPlottable( SIM_TYPE aSimType )
{
switch( aSimType )
{
case ST_AC:
case ST_DC:
case ST_TRANSIENT:
return true;
default:
return false;
}
}
bool SIM_PLOT_PANEL::AddTrace( const wxString& aName, int aPoints,
const double* aX, const double* aY, SIM_PLOT_TYPE aFlags )
{
TRACE* trace = NULL;
// Find previous entry, if there is one
auto prev = m_traces.find( aName );
bool addedNewEntry = ( prev == m_traces.end() );
if( addedNewEntry )
{
if( m_type == ST_TRANSIENT )
{
bool hasVoltageTraces = false;
for( auto tr : m_traces )
{
if( !( tr.second->GetFlags() & SPT_CURRENT ) )
{
hasVoltageTraces = true;
break;
}
}
if( !hasVoltageTraces )
m_axis_y2->SetMasterScale( nullptr );
else
m_axis_y2->SetMasterScale( m_axis_y1 );
}
// New entry
trace = new TRACE( aName );
trace->SetTraceColour( generateColor() );
trace->SetPen( wxPen( trace->GetTraceColour(), 2, wxPENSTYLE_SOLID ) );
m_traces[aName] = trace;
// It is a trick to keep legend & coords always on the top
for( mpLayer* l : m_topLevel )
DelLayer( l );
AddLayer( (mpLayer*) trace );
for( mpLayer* l : m_topLevel )
AddLayer( l );
}
else
{
trace = prev->second;
}
std::vector<double> tmp( aY, aY + aPoints );
if( m_type == ST_AC )
{
if( aFlags & SPT_AC_PHASE )
{
for( int i = 0; i < aPoints; i++ )
tmp[i] = tmp[i] * 180.0 / M_PI; // convert to degrees
}
else
{
for( int i = 0; i < aPoints; i++ )
tmp[i] = 20 * log( tmp[i] ) / log( 10.0 ); // convert to dB
}
}
trace->SetData( std::vector<double>( aX, aX + aPoints ), tmp );
if( aFlags & SPT_AC_PHASE || aFlags & SPT_CURRENT )
trace->SetScale( m_axis_x, m_axis_y2 );
else
trace->SetScale( m_axis_x, m_axis_y1 );
trace->SetFlags( aFlags );
UpdateAll();
return addedNewEntry;
}
bool SIM_PLOT_PANEL::DeleteTrace( const wxString& aName )
{
auto it = m_traces.find( aName );
if( it != m_traces.end() )
{
TRACE* trace = it->second;
m_traces.erase( it );
if( CURSOR* cursor = trace->GetCursor() )
DelLayer( cursor, true );
DelLayer( trace, true, true );
ResetScales();
return true;
}
return false;
}
void SIM_PLOT_PANEL::DeleteAllTraces()
{
for( auto& t : m_traces )
{
DeleteTrace( t.first );
}
m_colorIdx = 0;
m_traces.clear();
}
bool SIM_PLOT_PANEL::HasCursorEnabled( const wxString& aName ) const
{
TRACE* t = GetTrace( aName );
return t ? t->HasCursor() : false;
}
void SIM_PLOT_PANEL::EnableCursor( const wxString& aName, bool aEnable )
{
TRACE* t = GetTrace( aName );
if( t == nullptr || t->HasCursor() == aEnable )
return;
if( aEnable )
{
CURSOR* c = new CURSOR( t );
int plotCenter = GetMarginLeft() + ( GetXScreen() - GetMarginLeft() - GetMarginRight() ) / 2;
c->SetX( plotCenter );
t->SetCursor( c );
AddLayer( c );
}
else
{
CURSOR* c = t->GetCursor();
t->SetCursor( NULL );
DelLayer( c, true );
}
// Notify the parent window about the changes
wxQueueEvent( GetParent(), new wxCommandEvent( EVT_SIM_CURSOR_UPDATE ) );
}
void SIM_PLOT_PANEL::ResetScales()
{
if( m_axis_x )
m_axis_x->ResetDataRange();
if( m_axis_y1 )
m_axis_y1->ResetDataRange();
if( m_axis_y2 )
m_axis_y2->ResetDataRange();
for( auto t : m_traces )
t.second->UpdateScales();
}
wxColour SIM_PLOT_PANEL::generateColor()
{
/// @todo have a look at:
/// http://stanford.edu/~mwaskom/software/seaborn/tutorial/color_palettes.html
/// https://github.com/Gnuplotting/gnuplot-palettes
const unsigned long colors[] = { 0x0000ff, 0x00ff00, 0xff0000, 0x00ffff, 0xff00ff, 0xffff000, 0xffffff };
//const unsigned long colors[] = { 0xe3cea6, 0xb4781f, 0x8adfb2, 0x2ca033, 0x999afb, 0x1c1ae3, 0x6fbffd, 0x007fff, 0xd6b2ca, 0x9a3d6a };
// hls
//const unsigned long colors[] = { 0x0f1689, 0x0f7289, 0x35890f, 0x0f8945, 0x89260f, 0x890f53, 0x89820f, 0x630f89 };
// pastels, good for dark background
//const unsigned long colors[] = { 0x2fd8fe, 0x628dfa, 0x53d8a6, 0xa5c266, 0xb3b3b3, 0x94c3e4, 0xca9f8d, 0xac680e };
const unsigned int colorCount = sizeof(colors) / sizeof(unsigned long);
/// @todo generate shades to avoid repeating colors
return wxColour( colors[m_colorIdx++ % colorCount] );
}
wxDEFINE_EVENT( EVT_SIM_CURSOR_UPDATE, wxCommandEvent );