kicad/pcbnew/router/pns_item.h

297 lines
7.9 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2017 CERN
* Copyright (C) 2016-2019 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __PNS_ITEM_H
#define __PNS_ITEM_H
#include <memory>
#include <math/vector2d.h>
#include <geometry/shape.h>
#include <geometry/shape_line_chain.h>
#include "pns_layerset.h"
class BOARD_CONNECTED_ITEM;
namespace PNS {
class NODE;
enum LineMarker {
MK_HEAD = ( 1 << 0 ),
MK_VIOLATION = ( 1 << 3 ),
MK_LOCKED = ( 1 << 4 ),
MK_DP_COUPLED = ( 1 << 5 )
};
/**
* Class ITEM
*
* Base class for PNS router board items. Implements the shared properties of all PCB items -
* net, spanned layers, geometric shape & refererence to owning model.
*/
class ITEM
{
public:
static const int UnusedNet = INT_MAX;
///> Supported item types
enum PnsKind
{
SOLID_T = 1,
LINE_T = 2,
JOINT_T = 4,
SEGMENT_T = 8,
VIA_T = 16,
DIFF_PAIR_T = 32,
ANY_T = 0xff
};
ITEM( PnsKind aKind )
{
m_net = UnusedNet;
m_movable = true;
m_kind = aKind;
m_parent = NULL;
m_owner = NULL;
m_marker = 0;
m_rank = -1;
m_routable = true;
}
ITEM( const ITEM& aOther )
{
m_layers = aOther.m_layers;
m_net = aOther.m_net;
m_movable = aOther.m_movable;
m_kind = aOther.m_kind;
m_parent = aOther.m_parent;
m_owner = NULL;
m_marker = aOther.m_marker;
m_rank = aOther.m_rank;
m_routable = aOther.m_routable;
}
virtual ~ITEM();
/**
* Function Clone()
*
* Returns a deep copy of the item
*/
virtual ITEM* Clone() const = 0;
/*
* Function Hull()
*
* Returns a convex polygon "hull" of a the item, that is used as the walk-around
* path.
* @param aClearance defines how far from the body of the item the hull should be,
* @param aWalkaroundThickness is the width of the line that walks around this hull.
*/
virtual const SHAPE_LINE_CHAIN Hull( int aClearance = 0, int aWalkaroundThickness = 0 ) const
{
return SHAPE_LINE_CHAIN();
}
/**
* Function Kind()
*
* Returns the type (kind) of the item
*/
PnsKind Kind() const
{
return m_kind;
}
/**
* Function OfKind()
*
* Returns true if the item's type matches the mask aKindMask.
*/
bool OfKind( int aKindMask ) const
{
return ( aKindMask & m_kind ) != 0;
}
/**
* Function KindStr()
*
* Returns the kind of the item, as string
*/
std::string KindStr() const;
void SetParent( BOARD_CONNECTED_ITEM* aParent ) { m_parent = aParent; }
BOARD_CONNECTED_ITEM* Parent() const { return m_parent; }
void SetNet( int aNet ) { m_net = aNet; }
int Net() const { return m_net; }
const LAYER_RANGE& Layers() const { return m_layers; }
void SetLayers( const LAYER_RANGE& aLayers ) { m_layers = aLayers; }
void SetLayer( int aLayer ) { m_layers = LAYER_RANGE( aLayer, aLayer ); }
virtual int Layer() const { return Layers().Start(); }
/**
* Function LayersOverlap()
*
* Returns true if the set of layers spanned by aOther overlaps our
* layers.
*/
bool LayersOverlap( const ITEM* aOther ) const
{
return Layers().Overlaps( aOther->Layers() );
}
/**
* Function Owner()
*
* Returns the owner of this item, or NULL if there's none.
*/
NODE* Owner() const { return m_owner; }
/**
* Functon SetOwner()
*
* Sets the node that owns this item. An item can belong to a single NODE or be unowned.
*/
void SetOwner( NODE* aOwner ) { m_owner = aOwner; }
/**
* Function BelongsTo()
*
* @return true if the item is owned by the node aNode.
*/
bool BelongsTo( NODE* aNode ) const
{
return m_owner == aNode;
}
/**
* Function Collide()
*
* Checks for a collision (clearance violation) with between us and item aOther.
* Collision checking takes all PCB stuff into accound (layers, nets, DRC rules).
* Optionally returns a minimum translation vector for force propagation algorithm.
*
* @param aOther item to check collision against
* @param aClearance desired clearance
* @param aNeedMTV when true, the minimum translation vector is calculated
* @param aMTV the minimum translation vector
* @return true, if a collision was found.
*/
virtual bool Collide( const ITEM* aOther, int aClearance, bool aNeedMTV, VECTOR2I& aMTV,
bool aDifferentNetsOnly = true ) const;
/**
* Function CollideHoles()
*
* Similar to Collide(), above, but checks for hole-to-hole-minimum violations.
*/
bool CollideHoles( const ITEM* aOther, bool aNeedMTV, VECTOR2I& aMTV ) const;
/**
* Function Collide()
*
* A shortcut for ITEM::Colllide() without MTV stuff.
*/
bool Collide( const ITEM* aOther, int aClearance, bool aDifferentNetsOnly = true ) const
{
VECTOR2I dummy;
return Collide( aOther, aClearance, false, dummy, aDifferentNetsOnly );
}
/**
* Function Shape()
*
* Returns the geometrical shape of the item. Used
* for collision detection & spatial indexing.
*/
virtual const SHAPE* Shape() const
{
return NULL;
}
virtual void Mark( int aMarker ) { m_marker = aMarker; }
virtual void Unmark( int aMarker = -1 ) { m_marker &= ~aMarker; }
virtual int Marker() const { return m_marker; }
virtual void SetRank( int aRank ) { m_rank = aRank; }
virtual int Rank() const { return m_rank; }
virtual VECTOR2I Anchor( int n ) const
{
return VECTOR2I();
}
virtual int AnchorCount() const
{
return 0;
}
bool IsLocked() const
{
return Marker() & MK_LOCKED;
}
void SetRoutable( bool aRoutable ) { m_routable = aRoutable; }
bool IsRoutable() const { return m_routable; }
private:
bool collideSimple( const ITEM* aOther, int aClearance, bool aNeedMTV,
VECTOR2I& aMTV, bool aDifferentNetsOnly ) const;
protected:
PnsKind m_kind;
BOARD_CONNECTED_ITEM* m_parent;
NODE* m_owner;
LAYER_RANGE m_layers;
bool m_movable;
int m_net;
int m_marker;
int m_rank;
bool m_routable;
};
template< typename T, typename S >
std::unique_ptr< T > ItemCast( std::unique_ptr< S > aPtr )
{
static_assert(std::is_base_of< ITEM, S >::value, "Need to be handed a ITEM!");
static_assert(std::is_base_of< ITEM, T >::value, "Need to cast to an ITEM!");
return std::unique_ptr< T >( static_cast<T*>(aPtr.release()) );
}
template< typename T >
std::unique_ptr< typename std::remove_const< T >::type > Clone( const T& aItem )
{
static_assert(std::is_base_of< ITEM, T >::value, "Need to be handed an ITEM!");
return std::unique_ptr< typename std::remove_const< T >::type >( aItem.Clone() );
}
}
#endif // __PNS_ITEM_H