kicad/pcb_calculator/transline/coplanar.cpp

264 lines
9.2 KiB
C++

/*
* coplanar.cpp - coplanar class implementation
*
* Copyright (C) 2008 Michael Margraf <michael.margraf@alumni.tu-berlin.de>
* Copyright (C) 2005, 2006 Stefan Jahn <stefan@lkcc.org>
* Modified for Kicad: 2011 jean-pierre.charras
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this package; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "coplanar.h"
#include "units.h"
COPLANAR::COPLANAR() : TRANSLINE()
{
m_Name = "CoPlanar";
backMetal = false;
Init();
}
GROUNDEDCOPLANAR::GROUNDEDCOPLANAR() : COPLANAR()
{
m_Name = "GrCoPlanar";
backMetal = true;
}
// -------------------------------------------------------------------
void COPLANAR::calcAnalyze()
{
m_parameters[SKIN_DEPTH_PRM] = skin_depth();
// other local variables (quasi-static constants)
double k1, kk1, kpk1, k2, k3, q1, q2, q3 = 0, qz, er0 = 0;
double zl_factor;
// compute the necessary quasi-static approx. (K1, K3, er(0) and Z(0))
k1 = m_parameters[PHYS_WIDTH_PRM]
/ ( m_parameters[PHYS_WIDTH_PRM] + m_parameters[PHYS_S_PRM] + m_parameters[PHYS_S_PRM] );
kk1 = ellipk( k1 );
kpk1 = ellipk( sqrt( 1 - k1 * k1 ) );
q1 = kk1 / kpk1;
// backside is metal
if( backMetal )
{
k3 = tanh( ( M_PI / 4 ) * ( m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM] ) )
/ tanh( ( M_PI / 4 )
* ( m_parameters[PHYS_WIDTH_PRM] + m_parameters[PHYS_S_PRM]
+ m_parameters[PHYS_S_PRM] )
/ m_parameters[H_PRM] );
q3 = ellipk( k3 ) / ellipk( sqrt( 1 - k3 * k3 ) );
qz = 1 / ( q1 + q3 );
er0 = 1 + q3 * qz * ( m_parameters[EPSILONR_PRM] - 1 );
zl_factor = ZF0 / 2 * qz;
}
// backside is air
else
{
k2 = sinh( ( M_PI / 4 ) * ( m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM] ) )
/ sinh( ( M_PI / 4 )
* ( m_parameters[PHYS_WIDTH_PRM] + m_parameters[PHYS_S_PRM]
+ m_parameters[PHYS_S_PRM] )
/ m_parameters[H_PRM] );
q2 = ellipk( k2 ) / ellipk( sqrt( 1 - k2 * k2 ) );
er0 = 1 + ( m_parameters[EPSILONR_PRM] - 1 ) / 2 * q2 / q1;
zl_factor = ZF0 / 4 / q1;
}
// adds effect of strip thickness
if( m_parameters[T_PRM] > 0 )
{
double d, se, We, ke, qe;
d = ( m_parameters[T_PRM] * 1.25 / M_PI )
* ( 1 + log( 4 * M_PI * m_parameters[PHYS_WIDTH_PRM] / m_parameters[T_PRM] ) );
se = m_parameters[PHYS_S_PRM] - d;
We = m_parameters[PHYS_WIDTH_PRM] + d;
// modifies k1 accordingly (k1 = ke)
ke = We / ( We + se + se ); // ke = k1 + (1 - k1 * k1) * d / 2 / s;
qe = ellipk( ke ) / ellipk( sqrt( 1 - ke * ke ) );
// backside is metal
if( backMetal )
{
qz = 1 / ( qe + q3 );
er0 = 1 + q3 * qz * ( m_parameters[EPSILONR_PRM] - 1 );
zl_factor = ZF0 / 2 * qz;
}
// backside is air
else
{
zl_factor = ZF0 / 4 / qe;
}
// modifies er0 as well
er0 = er0
- ( 0.7 * ( er0 - 1 ) * m_parameters[T_PRM] / m_parameters[PHYS_S_PRM] )
/ ( q1 + ( 0.7 * m_parameters[T_PRM] / m_parameters[PHYS_S_PRM] ) );
}
// pre-compute square roots
double sr_er = sqrt( m_parameters[EPSILONR_PRM] );
double sr_er0 = sqrt( er0 );
// cut-off frequency of the TE0 mode
double fte = ( C0 / 4 ) / ( m_parameters[H_PRM] * sqrt( m_parameters[EPSILONR_PRM] - 1 ) );
// dispersion factor G
double p = log( m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM] );
double u = 0.54 - ( 0.64 - 0.015 * p ) * p;
double v = 0.43 - ( 0.86 - 0.54 * p ) * p;
double G = exp( u * log( m_parameters[PHYS_WIDTH_PRM] / m_parameters[PHYS_S_PRM] ) + v );
// loss constant factors (computed only once for efficiency's sake)
double ac = 0;
if( m_parameters[T_PRM] > 0 )
{
// equations by GHIONE
double n = ( 1 - k1 ) * 8 * M_PI / ( m_parameters[T_PRM] * ( 1 + k1 ) );
double a = m_parameters[PHYS_WIDTH_PRM] / 2;
double b = a + m_parameters[PHYS_S_PRM];
ac = ( M_PI + log( n * a ) ) / a + ( M_PI + log( n * b ) ) / b;
}
double ac_factor = ac / ( 4 * ZF0 * kk1 * kpk1 * ( 1 - k1 * k1 ) );
double ad_factor = ( m_parameters[EPSILONR_PRM] / ( m_parameters[EPSILONR_PRM] - 1 ) )
* m_parameters[TAND_PRM] * M_PI / C0;
// ....................................................
double sr_er_f = sr_er0;
// add the dispersive effects to er0
sr_er_f += ( sr_er - sr_er0 ) / ( 1 + G * pow( m_parameters[FREQUENCY_PRM] / fte, -1.8 ) );
// for now, the loss are limited to strip losses (no radiation
// losses yet) losses in neper/length
m_parameters[LOSS_CONDUCTOR_PRM] =
20.0 / log( 10.0 ) * m_parameters[PHYS_LEN_PRM] * ac_factor * sr_er0
* sqrt( M_PI * MU0 * m_parameters[FREQUENCY_PRM] / m_parameters[SIGMA_PRM] );
m_parameters[LOSS_DIELECTRIC_PRM] = 20.0 / log( 10.0 ) * m_parameters[PHYS_LEN_PRM] * ad_factor
* m_parameters[FREQUENCY_PRM] * ( sr_er_f * sr_er_f - 1 )
/ sr_er_f;
m_parameters[ANG_L_PRM] = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM] * sr_er_f
* m_parameters[FREQUENCY_PRM] / C0; /* in radians */
m_parameters[EPSILON_EFF_PRM] = sr_er_f * sr_er_f;
m_parameters[Z0_PRM] = zl_factor / sr_er_f;
}
// -------------------------------------------------------------------
void COPLANAR::show_results()
{
setResult( 0, m_parameters[EPSILON_EFF_PRM], "" );
setResult( 1, m_parameters[LOSS_CONDUCTOR_PRM], "dB" );
setResult( 2, m_parameters[LOSS_DIELECTRIC_PRM], "dB" );
setResult( 3, m_parameters[SKIN_DEPTH_PRM] / UNIT_MICRON, "µm" );
}
#define MAX_ERROR 0.000001
// -------------------------------------------------------------------
/* @function calcSynthesize
*
* @TODO Add a warning in case the synthetizin algorithm did not converge.
* Add it for all transmission lines that uses @ref minimizeZ0Error1D .
*/
void COPLANAR::calcSynthesize()
{
if( isSelected( PHYS_WIDTH_PRM ) )
minimizeZ0Error1D( &( m_parameters[PHYS_WIDTH_PRM] ) );
else
minimizeZ0Error1D( &( m_parameters[PHYS_S_PRM] ) );
}
// -------------------------------------------------------------------
void COPLANAR::showSynthesize()
{
if( isSelected( PHYS_WIDTH_PRM ) )
setProperty( PHYS_WIDTH_PRM, m_parameters[PHYS_WIDTH_PRM] );
if( isSelected( PHYS_S_PRM ) )
setProperty( PHYS_S_PRM, m_parameters[PHYS_S_PRM] );
setProperty( PHYS_LEN_PRM, m_parameters[PHYS_LEN_PRM] );
if( !std::isfinite( m_parameters[PHYS_S_PRM] ) || m_parameters[PHYS_S_PRM] <= 0 )
{
if( isSelected( PHYS_S_PRM ) )
setErrorLevel( PHYS_S_PRM, TRANSLINE_ERROR );
else
setErrorLevel( PHYS_S_PRM, TRANSLINE_WARNING );
}
if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] <= 0 )
{
if( isSelected( PHYS_WIDTH_PRM ) )
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_ERROR );
else
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_WARNING );
}
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] < 0 )
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 )
setErrorLevel( Z0_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 )
setErrorLevel( ANG_L_PRM, TRANSLINE_WARNING );
}
void COPLANAR::showAnalyze()
{
setProperty( Z0_PRM, m_parameters[Z0_PRM] );
setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] );
if( !std::isfinite( m_parameters[PHYS_S_PRM] ) || m_parameters[PHYS_S_PRM] <= 0 )
setErrorLevel( PHYS_S_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] <= 0 )
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] < 0 )
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 )
setErrorLevel( Z0_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 )
setErrorLevel( ANG_L_PRM, TRANSLINE_ERROR );
}