kicad/eeschema/sch_line.cpp

937 lines
26 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <base_units.h>
#include <bitmaps.h>
#include <string_utils.h>
#include <core/mirror.h>
#include <sch_painter.h>
#include <plotters/plotter.h>
#include <geometry/shape_segment.h>
#include <sch_line.h>
#include <sch_edit_frame.h>
#include <settings/color_settings.h>
#include <schematic.h>
#include <connection_graph.h>
#include <project/project_file.h>
#include <project/net_settings.h>
#include <trigo.h>
#include <board_item.h>
SCH_LINE::SCH_LINE( const VECTOR2I& pos, int layer ) :
SCH_ITEM( nullptr, SCH_LINE_T )
{
m_start = pos;
m_end = pos;
m_stroke.SetWidth( 0 );
m_stroke.SetPlotStyle( PLOT_DASH_TYPE::DEFAULT );
m_stroke.SetColor( COLOR4D::UNSPECIFIED );
switch( layer )
{
default: m_layer = LAYER_NOTES; break;
case LAYER_WIRE: m_layer = LAYER_WIRE; break;
case LAYER_BUS: m_layer = LAYER_BUS; break;
}
if( layer == LAYER_NOTES )
m_startIsDangling = m_endIsDangling = true;
else
m_startIsDangling = m_endIsDangling = false;
if( layer == LAYER_WIRE )
m_lastResolvedWidth = schIUScale.MilsToIU( DEFAULT_WIRE_WIDTH_MILS );
else if( layer == LAYER_BUS )
m_lastResolvedWidth = schIUScale.MilsToIU( DEFAULT_BUS_WIDTH_MILS );
else
m_lastResolvedWidth = schIUScale.MilsToIU( DEFAULT_LINE_WIDTH_MILS );
m_lastResolvedLineStyle = PLOT_DASH_TYPE::SOLID;
m_lastResolvedColor = COLOR4D::UNSPECIFIED;
}
SCH_LINE::SCH_LINE( const SCH_LINE& aLine ) :
SCH_ITEM( aLine )
{
m_start = aLine.m_start;
m_end = aLine.m_end;
m_stroke = aLine.m_stroke;
m_startIsDangling = aLine.m_startIsDangling;
m_endIsDangling = aLine.m_endIsDangling;
m_lastResolvedLineStyle = aLine.m_lastResolvedLineStyle;
m_lastResolvedWidth = aLine.m_lastResolvedWidth;
m_lastResolvedColor = aLine.m_lastResolvedColor;
}
wxString SCH_LINE::GetNetname( const SCH_SHEET_PATH& aSheet )
{
std::list<const SCH_LINE *> checkedLines;
checkedLines.push_back(this);
return FindWireSegmentNetNameRecursive( this, checkedLines, aSheet );
}
wxString SCH_LINE::FindWireSegmentNetNameRecursive( SCH_LINE *line,
std::list<const SCH_LINE *> &checkedLines,
const SCH_SHEET_PATH& aSheet ) const
{
for ( auto connected : line->ConnectedItems( aSheet ) )
{
if( connected->Type() == SCH_LINE_T )
{
if( std::find(checkedLines.begin(), checkedLines.end(), connected ) == checkedLines.end() )
{
SCH_LINE* connectedLine = static_cast<SCH_LINE*>( connected );
checkedLines.push_back( connectedLine );
wxString netName = FindWireSegmentNetNameRecursive( connectedLine, checkedLines,
aSheet );
if( !netName.IsEmpty() )
return netName;
}
}
else if( connected->Type() == SCH_LABEL_T
|| connected->Type() == SCH_GLOBAL_LABEL_T
|| connected->Type() == SCH_DIRECTIVE_LABEL_T)
{
return static_cast<SCH_TEXT*>( connected )->GetText();
}
}
return "";
}
EDA_ITEM* SCH_LINE::Clone() const
{
return new SCH_LINE( *this );
}
void SCH_LINE::Move( const VECTOR2I& aOffset )
{
if( aOffset != VECTOR2I( 0, 0 ) )
{
m_start += aOffset;
m_end += aOffset;
SetModified();
}
}
void SCH_LINE::MoveStart( const VECTOR2I& aOffset )
{
if( aOffset != VECTOR2I( 0, 0 ) )
{
m_start += aOffset;
SetModified();
}
}
void SCH_LINE::MoveEnd( const VECTOR2I& aOffset )
{
if( aOffset != VECTOR2I( 0, 0 ) )
{
m_end += aOffset;
SetModified();
}
}
#if defined(DEBUG)
void SCH_LINE::Show( int nestLevel, std::ostream& os ) const
{
NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str()
<< " layer=\"" << m_layer << '"'
<< " startIsDangling=\"" << m_startIsDangling
<< '"' << " endIsDangling=\""
<< m_endIsDangling << '"' << ">"
<< " <start" << m_start << "/>"
<< " <end" << m_end << "/>" << "</"
<< GetClass().Lower().mb_str() << ">\n";
}
#endif
void SCH_LINE::ViewGetLayers( int aLayers[], int& aCount ) const
{
aCount = 3;
aLayers[0] = LAYER_DANGLING;
aLayers[1] = m_layer;
aLayers[2] = LAYER_SELECTION_SHADOWS;
}
const BOX2I SCH_LINE::GetBoundingBox() const
{
int width = m_stroke.GetWidth() / 2;
int extra = m_stroke.GetWidth() & 0x1;
int xmin = std::min( m_start.x, m_end.x ) - width;
int ymin = std::min( m_start.y, m_end.y ) - width;
int xmax = std::max( m_start.x, m_end.x ) + width + extra;
int ymax = std::max( m_start.y, m_end.y ) + width + extra;
BOX2I ret( VECTOR2I( xmin, ymin ), VECTOR2I( xmax - xmin, ymax - ymin ) );
return ret;
}
double SCH_LINE::GetLength() const
{
return GetLineLength( m_start, m_end );
}
void SCH_LINE::SetLineColor( const COLOR4D& aColor )
{
m_stroke.SetColor( aColor );
m_lastResolvedColor = GetLineColor();
}
void SCH_LINE::SetLineColor( const double r, const double g, const double b, const double a )
{
COLOR4D newColor(r, g, b, a);
if( newColor == COLOR4D::UNSPECIFIED )
{
m_stroke.SetColor( COLOR4D::UNSPECIFIED );
}
else
{
// Eeschema does not allow alpha channel in colors
newColor.a = 1.0;
m_stroke.SetColor( newColor );
}
}
COLOR4D SCH_LINE::GetLineColor() const
{
if( m_stroke.GetColor() != COLOR4D::UNSPECIFIED )
m_lastResolvedColor = m_stroke.GetColor();
else if( !IsConnectable() )
m_lastResolvedColor = COLOR4D::UNSPECIFIED;
else if( !IsConnectivityDirty() )
m_lastResolvedColor = GetEffectiveNetClass()->GetSchematicColor();
return m_lastResolvedColor;
}
void SCH_LINE::SetLineStyle( const int aStyleId )
{
SetLineStyle( static_cast<PLOT_DASH_TYPE>( aStyleId ) );
}
void SCH_LINE::SetLineStyle( const PLOT_DASH_TYPE aStyle )
{
m_stroke.SetPlotStyle( aStyle );
m_lastResolvedLineStyle = GetLineStyle();
}
PLOT_DASH_TYPE SCH_LINE::GetLineStyle() const
{
if( m_stroke.GetPlotStyle() != PLOT_DASH_TYPE::DEFAULT )
return m_stroke.GetPlotStyle();
return PLOT_DASH_TYPE::SOLID;
}
PLOT_DASH_TYPE SCH_LINE::GetEffectiveLineStyle() const
{
if( m_stroke.GetPlotStyle() != PLOT_DASH_TYPE::DEFAULT )
m_lastResolvedLineStyle = m_stroke.GetPlotStyle();
else if( !IsConnectable() )
m_lastResolvedLineStyle = PLOT_DASH_TYPE::SOLID;
else if( !IsConnectivityDirty() )
m_lastResolvedLineStyle = (PLOT_DASH_TYPE) GetEffectiveNetClass()->GetLineStyle();
return m_lastResolvedLineStyle;
}
void SCH_LINE::SetLineWidth( const int aSize )
{
m_stroke.SetWidth( aSize );
m_lastResolvedWidth = GetPenWidth();
}
int SCH_LINE::GetPenWidth() const
{
SCHEMATIC* schematic = Schematic();
switch ( m_layer )
{
default:
if( m_stroke.GetWidth() > 0 )
return m_stroke.GetWidth();
if( schematic )
return schematic->Settings().m_DefaultLineWidth;
return schIUScale.MilsToIU( DEFAULT_LINE_WIDTH_MILS );
case LAYER_WIRE:
if( m_stroke.GetWidth() > 0 )
m_lastResolvedWidth = m_stroke.GetWidth();
else if( !IsConnectivityDirty() )
m_lastResolvedWidth = GetEffectiveNetClass()->GetWireWidth();
return m_lastResolvedWidth;
case LAYER_BUS:
if( m_stroke.GetWidth() > 0 )
m_lastResolvedWidth = m_stroke.GetWidth();
else if( !IsConnectivityDirty() )
m_lastResolvedWidth = GetEffectiveNetClass()->GetBusWidth();
return m_lastResolvedWidth;
}
}
void SCH_LINE::Print( const RENDER_SETTINGS* aSettings, const VECTOR2I& offset )
{
wxDC* DC = aSettings->GetPrintDC();
COLOR4D color = GetLineColor();
if( color == COLOR4D::UNSPECIFIED )
color = aSettings->GetLayerColor( GetLayer() );
VECTOR2I start = m_start;
VECTOR2I end = m_end;
PLOT_DASH_TYPE lineStyle = GetEffectiveLineStyle();
int penWidth = std::max( GetPenWidth(), aSettings->GetDefaultPenWidth() );
if( lineStyle <= PLOT_DASH_TYPE::FIRST_TYPE )
{
GRLine( DC, start.x, start.y, end.x, end.y, penWidth, color );
}
else
{
SHAPE_SEGMENT segment( start, end );
STROKE_PARAMS::Stroke( &segment, lineStyle, penWidth, aSettings,
[&]( const VECTOR2I& a, const VECTOR2I& b )
{
GRLine( DC, a.x, a.y, b.x, b.y, penWidth, color );
} );
}
}
void SCH_LINE::MirrorVertically( int aCenter )
{
if( m_flags & STARTPOINT )
MIRROR( m_start.y, aCenter );
if( m_flags & ENDPOINT )
MIRROR( m_end.y, aCenter );
}
void SCH_LINE::MirrorHorizontally( int aCenter )
{
if( m_flags & STARTPOINT )
MIRROR( m_start.x, aCenter );
if( m_flags & ENDPOINT )
MIRROR( m_end.x, aCenter );
}
void SCH_LINE::Rotate( const VECTOR2I& aCenter )
{
// When we allow off grid items, the
// else if should become a plain if to allow
// rotation around the center of the line
if( m_flags & STARTPOINT )
RotatePoint( m_start, aCenter, ANGLE_90 );
else if( m_flags & ENDPOINT )
RotatePoint( m_end, aCenter, ANGLE_90 );
}
void SCH_LINE::RotateStart( const VECTOR2I& aCenter )
{
RotatePoint( m_start, aCenter, ANGLE_90 );
}
void SCH_LINE::RotateEnd( const VECTOR2I& aCenter )
{
RotatePoint( m_end, aCenter, ANGLE_90 );
}
int SCH_LINE::GetAngleFrom( const VECTOR2I& aPoint ) const
{
VECTOR2I vec;
if( aPoint == m_start )
vec = m_end - aPoint;
else
vec = m_start - aPoint;
return KiROUND( EDA_ANGLE( vec ).AsDegrees() );
}
int SCH_LINE::GetReverseAngleFrom( const VECTOR2I& aPoint ) const
{
VECTOR2I vec;
if( aPoint == m_end )
vec = m_start - aPoint;
else
vec = m_end - aPoint;
return KiROUND( EDA_ANGLE( vec ).AsDegrees() );
}
bool SCH_LINE::IsParallel( const SCH_LINE* aLine ) const
{
wxCHECK_MSG( aLine != nullptr && aLine->Type() == SCH_LINE_T, false,
wxT( "Cannot test line segment for overlap." ) );
VECTOR2I firstSeg = m_end - m_start;
VECTOR2I secondSeg = aLine->m_end - aLine->m_start;
// Use long long here to avoid overflow in calculations
return !( (long long) firstSeg.x * secondSeg.y - (long long) firstSeg.y * secondSeg.x );
}
SCH_LINE* SCH_LINE::MergeOverlap( SCH_SCREEN* aScreen, SCH_LINE* aLine, bool aCheckJunctions )
{
auto less =
[]( const VECTOR2I& lhs, const VECTOR2I& rhs ) -> bool
{
if( lhs.x == rhs.x )
return lhs.y < rhs.y;
return lhs.x < rhs.x;
};
wxCHECK_MSG( aLine != nullptr && aLine->Type() == SCH_LINE_T, nullptr,
wxT( "Cannot test line segment for overlap." ) );
if( this == aLine || GetLayer() != aLine->GetLayer() )
return nullptr;
VECTOR2I leftmost_start = aLine->m_start;
VECTOR2I leftmost_end = aLine->m_end;
VECTOR2I rightmost_start = m_start;
VECTOR2I rightmost_end = m_end;
// We place the start to the left and below the end of both lines
if( leftmost_start != std::min( { leftmost_start, leftmost_end }, less ) )
std::swap( leftmost_start, leftmost_end );
if( rightmost_start != std::min( { rightmost_start, rightmost_end }, less ) )
std::swap( rightmost_start, rightmost_end );
// - leftmost is the line that starts farthest to the left
// - other is the line that is _not_ leftmost
// - rightmost is the line that ends farthest to the right. This may or may not be 'other'
// as the second line may be completely covered by the first.
if( less( rightmost_start, leftmost_start ) )
{
std::swap( leftmost_start, rightmost_start );
std::swap( leftmost_end, rightmost_end );
}
VECTOR2I other_start = rightmost_start;
VECTOR2I other_end = rightmost_end;
if( less( rightmost_end, leftmost_end ) )
{
rightmost_start = leftmost_start;
rightmost_end = leftmost_end;
}
// If we end one before the beginning of the other, no overlap is possible
if( less( leftmost_end, other_start ) )
{
return nullptr;
}
// Search for a common end:
if( ( leftmost_start == other_start ) && ( leftmost_end == other_end ) ) // Trivial case
{
SCH_LINE* ret = new SCH_LINE( *aLine );
ret->SetStartPoint( leftmost_start );
ret->SetEndPoint( leftmost_end );
ret->SetConnectivityDirty( true );
if( IsSelected() || aLine->IsSelected() )
ret->SetSelected();
return ret;
}
bool colinear = false;
/* Test alignment: */
if( ( leftmost_start.y == leftmost_end.y ) &&
( other_start.y == other_end.y ) ) // Horizontal segment
{
colinear = ( leftmost_start.y == other_start.y );
}
else if( ( leftmost_start.x == leftmost_end.x ) &&
( other_start.x == other_end.x ) ) // Vertical segment
{
colinear = ( leftmost_start.x == other_start.x );
}
else
{
// We use long long here to avoid overflow -- it enforces promotion
// The slope of the left-most line is dy/dx. Then we check that the slope from the
// left most start to the right most start is the same as well as the slope from the
// left most start to right most end.
long long dx = leftmost_end.x - leftmost_start.x;
long long dy = leftmost_end.y - leftmost_start.y;
colinear = ( ( ( other_start.y - leftmost_start.y ) * dx ==
( other_start.x - leftmost_start.x ) * dy ) &&
( ( other_end.y - leftmost_start.y ) * dx ==
( other_end.x - leftmost_start.x ) * dy ) );
}
if( !colinear )
return nullptr;
// We either have a true overlap or colinear touching segments. We always want to merge
// the former, but the later only get merged if there no junction at the touch point.
bool touching = leftmost_end == rightmost_start;
if( touching && aCheckJunctions && aScreen->IsJunction( leftmost_end ) )
return nullptr;
// Make a new segment that merges the 2 segments
leftmost_end = rightmost_end;
SCH_LINE* ret = new SCH_LINE( *aLine );
ret->SetStartPoint( leftmost_start );
ret->SetEndPoint( leftmost_end );
ret->SetConnectivityDirty( true );
if( IsSelected() || aLine->IsSelected() )
ret->SetSelected();
return ret;
}
void SCH_LINE::GetEndPoints( std::vector <DANGLING_END_ITEM>& aItemList )
{
if( IsConnectable() )
{
aItemList.emplace_back( IsBus() ? BUS_END : WIRE_END, this, m_start );
aItemList.emplace_back( IsBus() ? BUS_END : WIRE_END, this, m_end );
}
}
bool SCH_LINE::UpdateDanglingState( std::vector<DANGLING_END_ITEM>& aItemList,
const SCH_SHEET_PATH* aPath )
{
if( IsConnectable() )
{
bool previousStartState = m_startIsDangling;
bool previousEndState = m_endIsDangling;
m_startIsDangling = m_endIsDangling = true;
for( DANGLING_END_ITEM item : aItemList )
{
if( item.GetItem() == this )
continue;
if( ( IsWire() && item.GetType() != BUS_END && item.GetType() != BUS_ENTRY_END )
|| ( IsBus() && item.GetType() != WIRE_END && item.GetType() != PIN_END ) )
{
if( m_start == item.GetPosition() )
m_startIsDangling = false;
if( m_end == item.GetPosition() )
m_endIsDangling = false;
if( !m_startIsDangling && !m_endIsDangling )
break;
}
}
// We only use the bus dangling state for automatic line starting, so we don't care if it
// has changed or not (and returning true will result in extra work)
if( IsBus() )
return false;
return previousStartState != m_startIsDangling || previousEndState != m_endIsDangling;
}
return false;
}
bool SCH_LINE::IsConnectable() const
{
if( m_layer == LAYER_WIRE || m_layer == LAYER_BUS )
return true;
return false;
}
bool SCH_LINE::CanConnect( const SCH_ITEM* aItem ) const
{
if( m_layer == LAYER_WIRE )
{
switch( aItem->Type() )
{
case SCH_JUNCTION_T:
case SCH_NO_CONNECT_T:
case SCH_LABEL_T:
case SCH_GLOBAL_LABEL_T:
case SCH_HIER_LABEL_T:
case SCH_DIRECTIVE_LABEL_T:
case SCH_BUS_WIRE_ENTRY_T:
case SCH_SYMBOL_T:
case SCH_SHEET_T:
case SCH_SHEET_PIN_T:
return true;
default:
break;
}
}
else if( m_layer == LAYER_BUS )
{
switch( aItem->Type() )
{
case SCH_JUNCTION_T:
case SCH_LABEL_T:
case SCH_GLOBAL_LABEL_T:
case SCH_HIER_LABEL_T:
case SCH_DIRECTIVE_LABEL_T:
case SCH_BUS_WIRE_ENTRY_T:
case SCH_SHEET_T:
case SCH_SHEET_PIN_T:
return true;
default:
break;
}
}
return aItem->GetLayer() == m_layer;
}
std::vector<VECTOR2I> SCH_LINE::GetConnectionPoints() const
{
return { m_start, m_end };
}
bool SCH_LINE::ConnectionPropagatesTo( const EDA_ITEM* aItem ) const
{
switch( aItem->Type() )
{
case SCH_LINE_T:
return IsBus() == static_cast<const SCH_LINE*>( aItem )->IsBus();
default:
return true;
}
}
void SCH_LINE::GetSelectedPoints( std::vector<VECTOR2I>& aPoints ) const
{
if( m_flags & STARTPOINT )
aPoints.push_back( m_start );
if( m_flags & ENDPOINT )
aPoints.push_back( m_end );
}
wxString SCH_LINE::GetSelectMenuText( UNITS_PROVIDER* aUnitsProvider ) const
{
wxString txtfmt;
if( m_start.x == m_end.x )
{
switch( m_layer )
{
case LAYER_WIRE: txtfmt = _( "Vertical Wire, length %s" ); break;
case LAYER_BUS: txtfmt = _( "Vertical Bus, length %s" ); break;
default: txtfmt = _( "Vertical Graphic Line, length %s" ); break;
}
}
else if( m_start.y == m_end.y )
{
switch( m_layer )
{
case LAYER_WIRE: txtfmt = _( "Horizontal Wire, length %s" ); break;
case LAYER_BUS: txtfmt = _( "Horizontal Bus, length %s" ); break;
default: txtfmt = _( "Horizontal Graphic Line, length %s" ); break;
}
}
else
{
switch( m_layer )
{
case LAYER_WIRE: txtfmt = _( "Wire, length %s" ); break;
case LAYER_BUS: txtfmt = _( "Bus, length %s" ); break;
default: txtfmt = _( "Graphic Line, length %s" ); break;
}
}
return wxString::Format( txtfmt,
aUnitsProvider->MessageTextFromValue( EuclideanNorm( m_start - m_end ) ) );
}
BITMAPS SCH_LINE::GetMenuImage() const
{
if( m_layer == LAYER_NOTES )
return BITMAPS::add_dashed_line;
else if( m_layer == LAYER_WIRE )
return BITMAPS::add_line;
return BITMAPS::add_bus;
}
bool SCH_LINE::operator <( const SCH_ITEM& aItem ) const
{
if( Type() != aItem.Type() )
return Type() < aItem.Type();
const SCH_LINE* line = static_cast<const SCH_LINE*>( &aItem );
if( GetLayer() != line->GetLayer() )
return GetLayer() < line->GetLayer();
if( GetStartPoint().x != line->GetStartPoint().x )
return GetStartPoint().x < line->GetStartPoint().x;
if( GetStartPoint().y != line->GetStartPoint().y )
return GetStartPoint().y < line->GetStartPoint().y;
if( GetEndPoint().x != line->GetEndPoint().x )
return GetEndPoint().x < line->GetEndPoint().x;
return GetEndPoint().y < line->GetEndPoint().y;
}
bool SCH_LINE::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
// Performance enhancement for connection-building
if( aPosition == m_start || aPosition == m_end )
return true;
if( aAccuracy >= 0 )
aAccuracy += GetPenWidth() / 2;
else
aAccuracy = abs( aAccuracy );
return TestSegmentHit( aPosition, m_start, m_end, aAccuracy );
}
bool SCH_LINE::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
if( m_flags & (STRUCT_DELETED | SKIP_STRUCT ) )
return false;
BOX2I rect = aRect;
if ( aAccuracy )
rect.Inflate( aAccuracy );
if( aContained )
return rect.Contains( m_start ) && rect.Contains( m_end );
return rect.Intersects( m_start, m_end );
}
void SCH_LINE::SwapData( SCH_ITEM* aItem )
{
SCH_LINE* item = (SCH_LINE*) aItem;
std::swap( m_layer, item->m_layer );
std::swap( m_start, item->m_start );
std::swap( m_end, item->m_end );
std::swap( m_startIsDangling, item->m_startIsDangling );
std::swap( m_endIsDangling, item->m_endIsDangling );
std::swap( m_stroke, item->m_stroke );
}
bool SCH_LINE::doIsConnected( const VECTOR2I& aPosition ) const
{
if( m_layer != LAYER_WIRE && m_layer != LAYER_BUS )
return false;
return IsEndPoint( aPosition );
}
void SCH_LINE::Plot( PLOTTER* aPlotter, bool aBackground ) const
{
if( aBackground )
return;
auto* settings = static_cast<KIGFX::SCH_RENDER_SETTINGS*>( aPlotter->RenderSettings() );
int penWidth = std::max( GetPenWidth(), settings->GetMinPenWidth() );
COLOR4D color = GetLineColor();
if( color == COLOR4D::UNSPECIFIED )
color = settings->GetLayerColor( GetLayer() );
aPlotter->SetColor( color );
aPlotter->SetCurrentLineWidth( penWidth );
aPlotter->SetDash( penWidth, GetEffectiveLineStyle() );
aPlotter->MoveTo( m_start );
aPlotter->FinishTo( m_end );
aPlotter->SetDash( penWidth, PLOT_DASH_TYPE::SOLID );
// Plot attributes to a hypertext menu
std::vector<wxString> properties;
BOX2I bbox = GetBoundingBox();
bbox.Inflate( GetPenWidth() * 3 );
if( GetLayer() == LAYER_WIRE )
{
if( SCH_CONNECTION* connection = Connection() )
{
properties.emplace_back( wxString::Format( wxT( "!%s = %s" ),
_( "Net" ),
connection->Name() ) );
properties.emplace_back( wxString::Format( wxT( "!%s = %s" ),
_( "Resolved netclass" ),
GetEffectiveNetClass()->GetName() ) );
}
}
else if( GetLayer() == LAYER_BUS )
{
if( SCH_CONNECTION* connection = Connection() )
{
for( std::shared_ptr<SCH_CONNECTION>& member : connection->Members() )
properties.emplace_back( wxT( "!" ) + member->Name() );
}
}
if( !properties.empty() )
aPlotter->HyperlinkMenu( bbox, properties );
}
void SCH_LINE::SetPosition( const VECTOR2I& aPosition )
{
m_end = m_end - ( m_start - aPosition );
m_start = aPosition;
}
void SCH_LINE::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
wxString msg;
switch( GetLayer() )
{
case LAYER_WIRE: msg = _( "Wire" ); break;
case LAYER_BUS: msg = _( "Bus" ); break;
default: msg = _( "Graphical" ); break;
}
aList.emplace_back( _( "Line Type" ), msg );
PLOT_DASH_TYPE lineStyle = GetLineStyle();
if( GetEffectiveLineStyle() != lineStyle )
aList.emplace_back( _( "Line Style" ), _( "from netclass" ) );
else
m_stroke.GetMsgPanelInfo( aFrame, aList, true, false );
SCH_CONNECTION* conn = nullptr;
if( !IsConnectivityDirty() && dynamic_cast<SCH_EDIT_FRAME*>( aFrame ) )
conn = Connection();
if( conn )
{
conn->AppendInfoToMsgPanel( aList );
if( !conn->IsBus() )
{
aList.emplace_back( _( "Resolved Netclass" ),
UnescapeString( GetEffectiveNetClass()->GetName() ) );
}
}
}
bool SCH_LINE::IsGraphicLine() const
{
return ( GetLayer() == LAYER_NOTES );
}
bool SCH_LINE::IsWire() const
{
return ( GetLayer() == LAYER_WIRE );
}
bool SCH_LINE::IsBus() const
{
return ( GetLayer() == LAYER_BUS );
}