kicad/polygon/PolyLine.cpp

1393 lines
39 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Few parts of this code come from FreePCB, released under the GNU General Public License V2.
* (see http://www.freepcb.com/ )
*
* Copyright (C) 2012-2015 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012-2015 KiCad Developers, see CHANGELOG.TXT for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file PolyLine.cpp
* @note implementation of CPolyLine class
*/
//
// implementation for kicad, using clipper polygon clipping library
// for transformations not handled (at least for Kicad) by boost::polygon
//
#include <cmath>
#include <vector>
#include <algorithm>
#include <fctsys.h>
#include <common.h> // KiROUND
#include <PolyLine.h>
#include <bezier_curves.h>
#include <polygon_test_point_inside.h>
#include <math_for_graphics.h>
#include <polygon_test_point_inside.h>
CPolyLine::CPolyLine()
{
m_hatchStyle = NO_HATCH;
m_hatchPitch = 0;
m_layer = F_Cu;
m_flags = 0;
}
CPolyLine::CPolyLine( const CPolyLine& aCPolyLine)
{
Copy( &aCPolyLine );
m_HatchLines = aCPolyLine.m_HatchLines; // vector <> copy
}
// destructor, removes display elements
//
CPolyLine::~CPolyLine()
{
UnHatch();
}
/* Removes corners which create a null segment edge
* (i.e. when 2 successive corners are at the same location)
* returns the count of removed corners.
*/
int CPolyLine::RemoveNullSegments()
{
int removed = 0;
unsigned startcountour = 0;
for( unsigned icnt = 1; icnt < m_CornersList.GetCornersCount(); icnt ++ )
{
unsigned last = icnt-1;
if( m_CornersList[icnt].end_contour )
{
last = startcountour;
startcountour = icnt+1;
}
if( ( m_CornersList[last].x == m_CornersList[icnt].x ) &&
( m_CornersList[last].y == m_CornersList[icnt].y ) )
{
DeleteCorner( icnt );
icnt--;
removed ++;
}
if( m_CornersList[icnt].end_contour )
{
startcountour = icnt+1;
icnt++;
}
}
return removed;
}
/* Convert a self-intersecting polygon to one (or more) non self-intersecting polygon(s)
* and removes null segments.
* param aNewPolygonList = a std::vector<CPolyLine*> reference where to store new CPolyLine
* needed by the normalization
* return the polygon count (always >= 1, because there is at least one polygon)
* There are new polygons only if the polygon count is > 1
*/
int CPolyLine::NormalizeAreaOutlines( std::vector<CPolyLine*>* aNewPolygonList )
{
SHAPE_POLY_SET polySet = ConvertPolyListToPolySet( m_CornersList );
// We are expecting only one main outline, but this main outline can have holes
// if holes: combine holes and remove them from the main outline.
// Note also we are using SHAPE_POLY_SET::PM_STRICTLY_SIMPLE in polygon
// calculations, but it is not mandatory. It is used mainly
// because there is usually only very few vertices in area outlines
SHAPE_POLY_SET::POLYGON& outline = polySet.Polygon( 0 );
SHAPE_POLY_SET holesBuffer;
// Move holes stored in outline to holesBuffer:
// The first SHAPE_LINE_CHAIN is the main outline, others are holes
while( outline.size() > 1 )
{
holesBuffer.AddOutline( outline.back() );
outline.pop_back();
}
polySet.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE);
// If any hole, substract it to main outline
if( holesBuffer.OutlineCount() )
{
holesBuffer.Simplify( SHAPE_POLY_SET::PM_FAST);
polySet.BooleanSubtract( holesBuffer, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
}
RemoveAllContours();
// Note: we can have more than outline, because a self intersecting outline will be
// broken to non intersecting polygons, and removing holes can also create a few polygons
for( int ii = 0; ii < polySet.OutlineCount(); ii++ )
{
CPolyLine* polyline = this;
if( ii > 0 )
{
polyline = new CPolyLine;
polyline->ImportSettings( this );
aNewPolygonList->push_back( polyline );
}
SHAPE_POLY_SET pnew;
pnew.NewOutline();
pnew.Polygon( 0 ) = polySet.CPolygon( ii );
polyline->m_CornersList = ConvertPolySetToPolyList( pnew );
polyline->RemoveNullSegments();
}
return polySet.OutlineCount();
}
/**
* Function ImportSettings
* Copy settings (layer, hatch styles) from aPoly
*/
void CPolyLine::ImportSettings( const CPolyLine * aPoly )
{
SetLayer( aPoly->GetLayer() );
SetHatchStyle( aPoly->GetHatchStyle() );
SetHatchPitch( aPoly->GetHatchPitch() );
}
/* initialize a contour
* set layer, hatch style, and starting point
*/
void CPolyLine::Start( LAYER_NUM layer, int x, int y, int hatch )
{
m_layer = layer;
SetHatchStyle( (enum HATCH_STYLE) hatch );
CPolyPt poly_pt( x, y );
poly_pt.end_contour = false;
m_CornersList.Append( poly_pt );
}
// add a corner to unclosed polyline
//
void CPolyLine::AppendCorner( int x, int y )
{
UnHatch();
CPolyPt poly_pt( x, y );
poly_pt.end_contour = false;
// add entries for new corner
m_CornersList.Append( poly_pt );
}
// move corner of polyline
//
void CPolyLine::MoveCorner( int ic, int x, int y )
{
UnHatch();
m_CornersList[ic].x = x;
m_CornersList[ic].y = y;
Hatch();
}
// delete corner and adjust arrays
//
void CPolyLine::DeleteCorner( int ic )
{
UnHatch();
int icont = GetContour( ic );
int iend = GetContourEnd( icont );
bool closed = icont < GetContoursCount() - 1 || GetClosed();
if( !closed )
{
// open contour, must be last contour
m_CornersList.DeleteCorner( ic );
}
else
{
// closed contour
m_CornersList.DeleteCorner( ic );
if( ic == iend )
m_CornersList[ic - 1].end_contour = true;
}
if( closed && GetContourSize( icont ) < 3 )
{
// delete the entire contour
RemoveContour( icont );
}
}
/******************************************/
void CPolyLine::RemoveContour( int icont )
/******************************************/
/**
* Function RemoveContour
* @param icont = contour number to remove
* remove a contour only if there is more than 1 contour
*/
{
UnHatch();
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
int polycount = GetContoursCount();
if( icont == 0 && polycount == 1 )
{
// remove the only contour
wxASSERT( 0 );
}
else
{
// remove closed contour
for( int ic = iend; ic>=istart; ic-- )
{
m_CornersList.DeleteCorner( ic );
}
}
Hatch();
}
CPolyLine* CPolyLine::Chamfer( unsigned int aDistance )
{
// Null segments create serious issues in calculations.
// remove them:
RemoveNullSegments();
CPolyLine* newPoly = new CPolyLine;
if( !aDistance )
{
newPoly->Copy( this );
return newPoly;
}
int polycount = GetContoursCount();
for( int contour = 0; contour < polycount; contour++ )
{
unsigned int startIndex = GetContourStart( contour );
unsigned int endIndex = GetContourEnd( contour );
for( unsigned int index = startIndex; index <= endIndex; index++ )
{
// Current vertex
int x1 = m_CornersList[index].x;
int y1 = m_CornersList[index].y;
double xa, ya; // Previous vertex
double xb, yb; // Next vertex
if( index == startIndex )
{
xa = m_CornersList[endIndex].x - x1;
ya = m_CornersList[endIndex].y - y1;
}
else
{
xa = m_CornersList[index - 1].x - x1;
ya = m_CornersList[index - 1].y - y1;
}
if( index == endIndex )
{
xb = m_CornersList[startIndex].x - x1;
yb = m_CornersList[startIndex].y - y1;
}
else
{
xb = m_CornersList[index + 1].x - x1;
yb = m_CornersList[index + 1].y - y1;
}
double lena = hypot( xa, ya );
double lenb = hypot( xb, yb );
double distance = aDistance;
// Chamfer one half of an edge at most
if( 0.5 * lena < distance )
distance = 0.5 * lena;
if( 0.5 * lenb < distance )
distance = 0.5 * lenb;
int nx1 = KiROUND( distance * xa / lena );
int ny1 = KiROUND( distance * ya / lena );
if( index == startIndex )
newPoly->Start( GetLayer(), x1 + nx1, y1 + ny1, GetHatchStyle() );
else
newPoly->AppendCorner( x1 + nx1, y1 + ny1 );
int nx2 = KiROUND( distance * xb / lenb );
int ny2 = KiROUND( distance * yb / lenb );
// Due to rounding errors, repeated corners could be added; this check prevents it
if(nx1 != nx2 || ny1 != ny2)
newPoly->AppendCorner( x1 + nx2, y1 + ny2 );
}
newPoly->CloseLastContour();
}
return newPoly;
}
CPolyLine* CPolyLine::Fillet( unsigned int aRadius, unsigned int aSegments )
{
// Null segments create serious issues in calculations.
// remove them:
RemoveNullSegments();
CPolyLine* newPoly = new CPolyLine;
if( !aRadius )
{
newPoly->Copy( this );
return newPoly;
}
int polycount = GetContoursCount();
for( int contour = 0; contour < polycount; contour++ )
{
unsigned int startIndex = GetContourStart( contour );
unsigned int endIndex = GetContourEnd( contour );
for( unsigned int index = startIndex; index <= endIndex; index++ )
{
// Current vertex
int x1 = m_CornersList[index].x;
int y1 = m_CornersList[index].y;
double xa, ya; // Previous vertex
double xb, yb; // Next vertex
if( index == startIndex )
{
xa = m_CornersList[endIndex].x - x1;
ya = m_CornersList[endIndex].y - y1;
}
else
{
xa = m_CornersList[index - 1].x - x1;
ya = m_CornersList[index - 1].y - y1;
}
if( index == endIndex )
{
xb = m_CornersList[startIndex].x - x1;
yb = m_CornersList[startIndex].y - y1;
}
else
{
xb = m_CornersList[index + 1].x - x1;
yb = m_CornersList[index + 1].y - y1;
}
double lena = hypot( xa, ya );
double lenb = hypot( xb, yb );
double cosine = ( xa * xb + ya * yb ) / ( lena * lenb );
double radius = aRadius;
double denom = sqrt( 2.0 / ( 1 + cosine ) - 1 );
// Do nothing in case of parallel edges
if( std::isinf( denom ) )
continue;
// Limit rounding distance to one half of an edge
if( 0.5 * lena * denom < radius )
radius = 0.5 * lena * denom;
if( 0.5 * lenb * denom < radius )
radius = 0.5 * lenb * denom;
// Calculate fillet arc absolute center point (xc, yx)
double k = radius / sqrt( .5 * ( 1 - cosine ) );
double lenab = sqrt( ( xa / lena + xb / lenb ) * ( xa / lena + xb / lenb ) +
( ya / lena + yb / lenb ) * ( ya / lena + yb / lenb ) );
double xc = x1 + k * ( xa / lena + xb / lenb ) / lenab;
double yc = y1 + k * ( ya / lena + yb / lenb ) / lenab;
// Calculate arc start and end vectors
k = radius / sqrt( 2 / ( 1 + cosine ) - 1 );
double xs = x1 + k * xa / lena - xc;
double ys = y1 + k * ya / lena - yc;
double xe = x1 + k * xb / lenb - xc;
double ye = y1 + k * yb / lenb - yc;
// Cosine of arc angle
double argument = ( xs * xe + ys * ye ) / ( radius * radius );
if( argument < -1 ) // Just in case...
argument = -1;
else if( argument > 1 )
argument = 1;
double arcAngle = acos( argument );
// Calculate the number of segments
double tempSegments = (double) aSegments * ( arcAngle / ( 2 * M_PI ) );
if( tempSegments - (int) tempSegments > 0 )
tempSegments++;
unsigned int segments = (unsigned int) tempSegments;
double deltaAngle = arcAngle / segments;
double startAngle = atan2( -ys, xs );
// Flip arc for inner corners
if( xa * yb - ya * xb <= 0 )
deltaAngle *= -1;
double nx = xc + xs;
double ny = yc + ys;
if( index == startIndex )
newPoly->Start( GetLayer(), KiROUND( nx ), KiROUND( ny ), GetHatchStyle() );
else
newPoly->AppendCorner( KiROUND( nx ), KiROUND( ny ) );
// Store the previous added corner to make a sanity check
int prevX = KiROUND(nx);
int prevY = KiROUND(ny);
for( unsigned int j = 0; j < segments; j++ )
{
nx = xc + cos( startAngle + (j + 1) * deltaAngle ) * radius;
ny = yc - sin( startAngle + (j + 1) * deltaAngle ) * radius;
// Due to rounding errors, repeated corners could be added; this check prevents it
if(KiROUND(nx) != prevX || KiROUND(ny) != prevY)
{
newPoly->AppendCorner( KiROUND( nx ), KiROUND( ny ) );
prevX = KiROUND(nx);
prevY = KiROUND(ny);
}
}
}
newPoly->CloseLastContour();
}
return newPoly;
}
/******************************************/
void CPolyLine::RemoveAllContours( void )
/******************************************/
/**
* function RemoveAllContours
* removes all corners from the list.
* Others params are not changed
*/
{
m_CornersList.RemoveAllContours();
}
/**
* Function InsertCorner
* insert a new corner between two existing corners
* @param ic = index for the insertion point: the corner is inserted AFTER ic
* @param x, y = coordinates corner to insert
*/
void CPolyLine::InsertCorner( int ic, int x, int y )
{
UnHatch();
if( (unsigned) (ic) >= m_CornersList.GetCornersCount() )
{
m_CornersList.Append( CPolyPt( x, y ) );
}
else
{
m_CornersList.InsertCorner(ic, CPolyPt( x, y ) );
}
if( (unsigned) (ic + 1) < m_CornersList.GetCornersCount() )
{
if( m_CornersList[ic].end_contour )
{
m_CornersList[ic + 1].end_contour = true;
m_CornersList[ic].end_contour = false;
}
}
Hatch();
}
// undraw polyline by removing all graphic elements from display list
void CPolyLine::UnHatch()
{
m_HatchLines.clear();
}
const EDA_RECT CPolyLine::GetBoundingBox()
{
int xmin = INT_MAX;
int ymin = INT_MAX;
int xmax = INT_MIN;
int ymax = INT_MIN;
for( unsigned i = 0; i< m_CornersList.GetCornersCount(); i++ )
{
xmin = std::min( xmin, m_CornersList[i].x );
xmax = std::max( xmax, m_CornersList[i].x );
ymin = std::min( ymin, m_CornersList[i].y );
ymax = std::max( ymax, m_CornersList[i].y );
}
EDA_RECT r;
r.SetOrigin( wxPoint( xmin, ymin ) );
r.SetEnd( wxPoint( xmax, ymax ) );
return r;
}
const EDA_RECT CPolyLine::GetBoundingBox( int icont )
{
int xmin = INT_MAX;
int ymin = INT_MAX;
int xmax = INT_MIN;
int ymax = INT_MIN;
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
for( int i = istart; i<=iend; i++ )
{
xmin = std::min( xmin, m_CornersList[i].x );
xmax = std::max( xmax, m_CornersList[i].x );
ymin = std::min( ymin, m_CornersList[i].y );
ymax = std::max( ymax, m_CornersList[i].y );
}
EDA_RECT r;
r.SetOrigin( wxPoint( xmin, ymin ) );
r.SetEnd( wxPoint( xmax, ymax ) );
return r;
}
int CPolyLine::GetContoursCount() const
{
return m_CornersList.GetContoursCount();
}
int CPOLYGONS_LIST::GetContoursCount() const
{
if( !m_cornersList.size() )
return 0;
// count the number of corners flagged end_contour
int ncont = 0;
for( unsigned ic = 0; ic < m_cornersList.size(); ic++ )
if( m_cornersList[ic].end_contour )
ncont++;
// The last corner can be not yet flagged end_contour.
// It was not counted, but the polygon exists, so count it
if( !m_cornersList[m_cornersList.size() - 1].end_contour )
ncont++;
return ncont;
}
int CPolyLine::GetContour( int ic )
{
int ncont = 0;
for( int i = 0; i<ic; i++ )
{
if( m_CornersList[i].end_contour )
ncont++;
}
return ncont;
}
int CPolyLine::GetContourStart( int icont )
{
if( icont == 0 )
return 0;
int ncont = 0;
for( unsigned i = 0; i<m_CornersList.GetCornersCount(); i++ )
{
if( m_CornersList[i].end_contour )
{
ncont++;
if( ncont == icont )
return i + 1;
}
}
wxASSERT( 0 );
return 0;
}
int CPolyLine::GetContourEnd( int icont )
{
if( icont < 0 )
return 0;
if( icont == GetContoursCount() - 1 )
return m_CornersList.GetCornersCount() - 1;
int ncont = 0;
for( unsigned i = 0; i<m_CornersList.GetCornersCount(); i++ )
{
if( m_CornersList[i].end_contour )
{
if( ncont == icont )
return i;
ncont++;
}
}
wxASSERT( 0 );
return 0;
}
int CPolyLine::GetContourSize( int icont )
{
return GetContourEnd( icont ) - GetContourStart( icont ) + 1;
}
bool CPolyLine::GetClosed()
{
if( m_CornersList.GetCornersCount() == 0 )
return false;
else
return m_CornersList[m_CornersList.GetCornersCount() - 1].end_contour;
}
// Creates hatch lines inside the outline of the complex polygon
//
// sort function used in ::Hatch to sort points by descending wxPoint.x values
bool sort_ends_by_descending_X( const wxPoint& ref, const wxPoint& tst )
{
return tst.x < ref.x;
}
void CPolyLine::Hatch()
{
m_HatchLines.clear();
if( m_hatchStyle == NO_HATCH || m_hatchPitch == 0 )
return;
if( !GetClosed() ) // If not closed, the poly is beeing created and not finalised. Not not hatch
return;
// define range for hatch lines
int min_x = m_CornersList[0].x;
int max_x = m_CornersList[0].x;
int min_y = m_CornersList[0].y;
int max_y = m_CornersList[0].y;
for( unsigned ic = 1; ic < m_CornersList.GetCornersCount(); ic++ )
{
if( m_CornersList[ic].x < min_x )
min_x = m_CornersList[ic].x;
if( m_CornersList[ic].x > max_x )
max_x = m_CornersList[ic].x;
if( m_CornersList[ic].y < min_y )
min_y = m_CornersList[ic].y;
if( m_CornersList[ic].y > max_y )
max_y = m_CornersList[ic].y;
}
// Calculate spacing between 2 hatch lines
int spacing;
if( m_hatchStyle == DIAGONAL_EDGE )
spacing = m_hatchPitch;
else
spacing = m_hatchPitch * 2;
// set the "length" of hatch lines (the length on horizontal axis)
double hatch_line_len = m_hatchPitch;
// To have a better look, give a slope depending on the layer
LAYER_NUM layer = GetLayer();
int slope_flag = (layer & 1) ? 1 : -1; // 1 or -1
double slope = 0.707106 * slope_flag; // 45 degrees slope
int max_a, min_a;
if( slope_flag == 1 )
{
max_a = KiROUND( max_y - slope * min_x );
min_a = KiROUND( min_y - slope * max_x );
}
else
{
max_a = KiROUND( max_y - slope * max_x );
min_a = KiROUND( min_y - slope * min_x );
}
min_a = (min_a / spacing) * spacing;
// calculate an offset depending on layer number,
// for a better look of hatches on a multilayer board
int offset = (layer * 7) / 8;
min_a += offset;
// now calculate and draw hatch lines
int nc = m_CornersList.GetCornersCount();
// loop through hatch lines
#define MAXPTS 200 // Usually we store only few values per one hatch line
// depending on the compexity of the zone outline
static std::vector <wxPoint> pointbuffer;
pointbuffer.clear();
pointbuffer.reserve( MAXPTS + 2 );
for( int a = min_a; a < max_a; a += spacing )
{
// get intersection points for this hatch line
// Note: because we should have an even number of intersections with the
// current hatch line and the zone outline (a closed polygon,
// or a set of closed polygons), if an odd count is found
// we skip this line (should not occur)
pointbuffer.clear();
int i_start_contour = 0;
for( int ic = 0; ic<nc; ic++ )
{
double x, y, x2, y2;
int ok;
if( m_CornersList[ic].end_contour ||
( ic == (int) (m_CornersList.GetCornersCount() - 1) ) )
{
ok = FindLineSegmentIntersection( a, slope,
m_CornersList[ic].x, m_CornersList[ic].y,
m_CornersList[i_start_contour].x,
m_CornersList[i_start_contour].y,
&x, &y, &x2, &y2 );
i_start_contour = ic + 1;
}
else
{
ok = FindLineSegmentIntersection( a, slope,
m_CornersList[ic].x, m_CornersList[ic].y,
m_CornersList[ic + 1].x, m_CornersList[ic + 1].y,
&x, &y, &x2, &y2 );
}
if( ok )
{
wxPoint point( KiROUND( x ), KiROUND( y ) );
pointbuffer.push_back( point );
}
if( ok == 2 )
{
wxPoint point( KiROUND( x2 ), KiROUND( y2 ) );
pointbuffer.push_back( point );
}
if( pointbuffer.size() >= MAXPTS ) // overflow
{
wxASSERT( 0 );
break;
}
}
// ensure we have found an even intersection points count
// because intersections are the ends of segments
// inside the polygon(s) and a segment has 2 ends.
// if not, this is a strange case (a bug ?) so skip this hatch
if( pointbuffer.size() % 2 != 0 )
continue;
// sort points in order of descending x (if more than 2) to
// ensure the starting point and the ending point of the same segment
// are stored one just after the other.
if( pointbuffer.size() > 2 )
sort( pointbuffer.begin(), pointbuffer.end(), sort_ends_by_descending_X );
// creates lines or short segments inside the complex polygon
for( unsigned ip = 0; ip < pointbuffer.size(); ip += 2 )
{
double dx = pointbuffer[ip + 1].x - pointbuffer[ip].x;
// Push only one line for diagonal hatch,
// or for small lines < twice the line len
// else push 2 small lines
if( m_hatchStyle == DIAGONAL_FULL || fabs( dx ) < 2 * hatch_line_len )
{
m_HatchLines.push_back( CSegment( pointbuffer[ip], pointbuffer[ip + 1] ) );
}
else
{
double dy = pointbuffer[ip + 1].y - pointbuffer[ip].y;
slope = dy / dx;
if( dx > 0 )
dx = hatch_line_len;
else
dx = -hatch_line_len;
double x1 = pointbuffer[ip].x + dx;
double x2 = pointbuffer[ip + 1].x - dx;
double y1 = pointbuffer[ip].y + dx * slope;
double y2 = pointbuffer[ip + 1].y - dx * slope;
m_HatchLines.push_back( CSegment( pointbuffer[ip].x,
pointbuffer[ip].y,
KiROUND( x1 ), KiROUND( y1 ) ) );
m_HatchLines.push_back( CSegment( pointbuffer[ip + 1].x,
pointbuffer[ip + 1].y,
KiROUND( x2 ), KiROUND( y2 ) ) );
}
}
}
}
// test to see if a point is inside polyline
//
bool CPolyLine::TestPointInside( int px, int py )
{
if( !GetClosed() )
{
wxASSERT( 0 );
}
// Test all polygons.
// Since the first is the main outline, and other are holes,
// if the tested point is inside only one contour, it is inside the whole polygon
// (in fact inside the main outline, and outside all holes).
// if inside 2 contours (the main outline + an hole), it is outside the poly.
int polycount = GetContoursCount();
bool inside = false;
for( int icont = 0; icont < polycount; icont++ )
{
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
// test point inside the current polygon
if( TestPointInsidePolygon( m_CornersList, istart, iend, px, py ) )
inside = not inside;
}
return inside;
}
// copy data from another CPolyLine, but don't draw it
void CPolyLine::Copy( const CPolyLine* src )
{
UnHatch();
m_layer = src->m_layer;
m_hatchStyle = src->m_hatchStyle;
m_hatchPitch = src->m_hatchPitch;
m_flags = src->m_flags;
m_CornersList.RemoveAllContours();
m_CornersList.Append( src->m_CornersList );
}
/*
* return true if the corner aCornerIdx is on a hole inside the main outline
* and false if it is on the main outline
*/
bool CPolyLine::IsCutoutContour( int aCornerIdx )
{
int ncont = GetContour( aCornerIdx );
if( ncont == 0 ) // the first contour is the main outline, not an hole
return false;
return true;
}
void CPolyLine::MoveOrigin( int x_off, int y_off )
{
UnHatch();
for( int ic = 0; ic < GetCornersCount(); ic++ )
{
SetX( ic, GetX( ic ) + x_off );
SetY( ic, GetY( ic ) + y_off );
}
Hatch();
}
/*
* AppendArc:
* adds segments to current contour to approximate the given arc
*/
void CPolyLine::AppendArc( int xi, int yi, int xf, int yf, int xc, int yc, int num )
{
// get radius
double radius = ::Distance( xi, yi, xf, yf );
// get angles of start pint and end point
double th_i = atan2( (double) (yi - yc), (double) (xi - xc) );
double th_f = atan2( (double) (yf - yc), (double) (xf - xc) );
double th_d = (th_f - th_i) / (num - 1);
double theta = th_i;
// generate arc
for( int ic = 0; ic < num; ic++ )
{
int x = xc + KiROUND( radius * cos( theta ) );
int y = yc + KiROUND( radius * sin( theta ) );
AppendCorner( x, y );
theta += th_d;
}
CloseLastContour();
}
void CPolyLine::AppendBezier( int x1, int y1, int x2, int y2, int x3, int y3 )
{
std::vector<wxPoint> polyPoints;
BEZIER_POLY converter( x1, y1, x2, y2, x3, y3 );
converter.GetPoly( polyPoints );
for( const auto& pt : polyPoints )
AppendCorner( pt.x, pt.y );
}
void CPolyLine::AppendBezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4 )
{
std::vector<wxPoint> polyPoints;
BEZIER_POLY converter( x1, y1, x2, y2, x3, y3, x4, y4 );
converter.GetPoly( polyPoints );
for( const auto& pt : polyPoints )
AppendCorner( pt.x, pt.y );
}
/*
* Function Distance
* Calculates the distance between a segment and a polygon (with holes):
* param aStart is the starting point of the segment.
* param aEnd is the ending point of the segment.
* param aWidth is the width of the segment.
* return distance between the segment and outline.
* 0 if segment intersects or is inside
*/
int CPolyLine::Distance( wxPoint aStart, wxPoint aEnd, int aWidth )
{
// We calculate the min dist between the segment and each outline segment
// However, if the segment to test is inside the outline, and does not cross
// any edge, it can be seen outside the polygon.
// Therefore test if a segment end is inside ( testing only one end is enough )
if( TestPointInside( aStart.x, aStart.y ) )
return 0;
int distance = INT_MAX;
int polycount = GetContoursCount();
for( int icont = 0; icont < polycount; icont++ )
{
int ic_start = GetContourStart( icont );
int ic_end = GetContourEnd( icont );
// now test spacing between area outline and segment
for( int ic2 = ic_start; ic2 <= ic_end; ic2++ )
{
int bx1 = GetX( ic2 );
int by1 = GetY( ic2 );
int bx2, by2;
if( ic2 == ic_end )
{
bx2 = GetX( ic_start );
by2 = GetY( ic_start );
}
else
{
bx2 = GetX( ic2 + 1 );
by2 = GetY( ic2 + 1 );
}
int d = GetClearanceBetweenSegments( bx1, by1, bx2, by2, 0,
aStart.x, aStart.y, aEnd.x, aEnd.y,
aWidth,
1, // min clearance, should be > 0
NULL, NULL );
if( distance > d )
distance = d;
if( distance <= 0 )
return 0;
}
}
return distance;
}
/*
* Function Distance
* Calculates the distance between a point and polygon (with holes):
* param aPoint is the coordinate of the point.
* return distance between the point and outline.
* 0 if the point is inside
*/
int CPolyLine::Distance( const wxPoint& aPoint )
{
// We calculate the dist between the point and each outline segment
// If the point is inside the outline, the dist is 0.
if( TestPointInside( aPoint.x, aPoint.y ) )
return 0;
int distance = INT_MAX;
int polycount = GetContoursCount();
for( int icont = 0; icont < polycount; icont++ )
{
int ic_start = GetContourStart( icont );
int ic_end = GetContourEnd( icont );
// now test spacing between area outline and segment
for( int ic2 = ic_start; ic2 <= ic_end; ic2++ )
{
int bx1 = GetX( ic2 );
int by1 = GetY( ic2 );
int bx2, by2;
if( ic2 == ic_end )
{
bx2 = GetX( ic_start );
by2 = GetY( ic_start );
}
else
{
bx2 = GetX( ic2 + 1 );
by2 = GetY( ic2 + 1 );
}
int d = KiROUND( GetPointToLineSegmentDistance( aPoint.x, aPoint.y,
bx1, by1, bx2, by2 ) );
if( distance > d )
distance = d;
if( distance <= 0 )
return 0;
}
}
return distance;
}
/* test is the point aPos is near (< aDistMax ) a vertex
* return int = the index of the first corner of the vertex, or -1 if not found.
*/
int CPolyLine::HitTestForEdge( const wxPoint& aPos, int aDistMax ) const
{
unsigned lim = m_CornersList.GetCornersCount();
int corner = -1; // Set to not found
unsigned first_corner_pos = 0;
for( unsigned item_pos = 0; item_pos < lim; item_pos++ )
{
unsigned end_segm = item_pos + 1;
/* the last corner of the current outline is tested
* the last segment of the current outline starts at current corner, and ends
* at the first corner of the outline
*/
if( m_CornersList.IsEndContour ( item_pos ) || end_segm >= lim )
{
unsigned tmp = first_corner_pos;
first_corner_pos = end_segm; // first_corner_pos is the beginning of next outline
end_segm = tmp; // end_segm is the beginning of the current outline
}
// test the dist between segment and ref point
int dist = KiROUND( GetPointToLineSegmentDistance(
aPos.x, aPos.y,
m_CornersList.GetX( item_pos ),
m_CornersList.GetY( item_pos ),
m_CornersList.GetX( end_segm ),
m_CornersList.GetY( end_segm ) ) );
if( dist < aDistMax )
{
corner = item_pos;
aDistMax = dist;
}
}
return corner;
}
/* test is the point aPos is near (< aDistMax ) a corner
* return int = the index of corner of the, or -1 if not found.
*/
int CPolyLine::HitTestForCorner( const wxPoint& aPos, int aDistMax ) const
{
int corner = -1; // Set to not found
wxPoint delta;
unsigned lim = m_CornersList.GetCornersCount();
for( unsigned item_pos = 0; item_pos < lim; item_pos++ )
{
delta.x = aPos.x - m_CornersList.GetX( item_pos );
delta.y = aPos.y - m_CornersList.GetY( item_pos );
// Calculate a distance:
int dist = std::max( abs( delta.x ), abs( delta.y ) );
if( dist < aDistMax ) // this corner is a candidate:
{
corner = item_pos;
aDistMax = dist;
}
}
return corner;
}
/**
* Function IsPolygonSelfIntersecting
* Test a CPolyLine for self-intersection of vertex (all contours).
*
* @return :
* false if no intersecting sides
* true if intersecting sides
* When a CPolyLine is self intersectic, it need to be normalized.
* (converted to non intersecting polygons)
*/
bool CPolyLine::IsPolygonSelfIntersecting()
{
// first, check for sides intersecting other sides
int n_cont = GetContoursCount();
// make bounding rect for each contour
std::vector<EDA_RECT> cr;
cr.reserve( n_cont );
for( int icont = 0; icont<n_cont; icont++ )
cr.push_back( GetBoundingBox( icont ) );
for( int icont = 0; icont<n_cont; icont++ )
{
int is_start = GetContourStart( icont );
int is_end = GetContourEnd( icont );
for( int is = is_start; is<=is_end; is++ )
{
int is_prev = is - 1;
if( is_prev < is_start )
is_prev = is_end;
int is_next = is + 1;
if( is_next > is_end )
is_next = is_start;
int x1i = GetX( is );
int y1i = GetY( is );
int x1f = GetX( is_next );
int y1f = GetY( is_next );
// check for intersection with any other sides
for( int icont2 = icont; icont2 < n_cont; icont2++ )
{
if( !cr[icont].Intersects( cr[icont2] ) )
{
// rectangles don't overlap, do nothing
}
else
{
int is2_start = GetContourStart( icont2 );
int is2_end = GetContourEnd( icont2 );
for( int is2 = is2_start; is2<=is2_end; is2++ )
{
int is2_prev = is2 - 1;
if( is2_prev < is2_start )
is2_prev = is2_end;
int is2_next = is2 + 1;
if( is2_next > is2_end )
is2_next = is2_start;
if( icont != icont2
|| ( is2 != is && is2 != is_prev && is2 != is_next &&
is != is2_prev && is != is2_next )
)
{
int x2i = GetX( is2 );
int y2i = GetY( is2 );
int x2f = GetX( is2_next );
int y2f = GetY( is2_next );
int ret = FindSegmentIntersections( x1i, y1i, x1f, y1f,
x2i, y2i, x2f, y2f );
if( ret )
{
// intersection between non-adjacent sides
return true;
}
}
}
}
}
}
}
return false;
}
const SHAPE_POLY_SET ConvertPolyListToPolySet( const CPOLYGONS_LIST& aList )
{
SHAPE_POLY_SET rv;
unsigned corners_count = aList.GetCornersCount();
// Enter main outline: this is the first contour
unsigned ic = 0;
if( !corners_count )
return rv;
int index = 0;
while( ic < corners_count )
{
int hole = -1;
if( index == 0 )
{
rv.NewOutline();
hole = -1;
}
else
{
hole = rv.NewHole();
}
while( ic < corners_count )
{
rv.Append( aList.GetX( ic ), aList.GetY( ic ), 0, hole );
if( aList.IsEndContour( ic ) )
break;
ic++;
}
ic++;
index++;
}
return rv;
}
const CPOLYGONS_LIST ConvertPolySetToPolyList(const SHAPE_POLY_SET& aPolyset)
{
CPOLYGONS_LIST list;
CPolyPt corner, firstCorner;
const SHAPE_POLY_SET::POLYGON& poly = aPolyset.CPolygon( 0 );
for( unsigned int jj = 0; jj < poly.size() ; jj++ )
{
const SHAPE_LINE_CHAIN& path = poly[jj];
for( int i = 0; i < path.PointCount(); i++ )
{
const VECTOR2I &v = path.CPoint( i );
corner.x = v.x;
corner.y = v.y;
corner.end_contour = false;
if( i == 0 )
firstCorner = corner;
list.AddCorner( corner );
}
firstCorner.end_contour = true;
list.AddCorner( firstCorner );
}
return list;
}