\input regression-test \title{Moloch Test Suite} \subtitle{A subtitle that is way to long and in fact might just need to be split across lines} \author[Johan]{Johan Larsson} \institute[LU]{Lund Univesity//Department of Statistics} \date{April 23, 2024} \begin{document} \START \showoutput \begin{frame}{Table of contents} \setbeamertemplate{section in toc}[sections numbered] \tableofcontents[hideallsubsections] \end{frame} \section{Results} \subsection{Proof of the Main Theorem} \begin{frame}<1> \frametitle{There Is No Largest Prime Number} \framesubtitle{The proof uses \textit{reductio ad absurdum}.} \begin{theorem} There is no largest prime number. \end{theorem} \begin{proof} \begin{enumerate} \item<1-| alert@1> Suppose $p$ were the largest prime number. \item<2-> Let $q$ be the product of the first $p$ numbers. \item<3-> Then $q$\;+\,$1$ is not divisible by any of them. \item<1-> Thus $q$\;+\,$1$ is also prime and greater than $p$.\qedhere \end{enumerate} \end{proof} \end{frame} \vfil\break \END \end{document}