//! Data structures and operations on tetrix matrices. The matrix types in this module are //! uncolored, since color information is generally not used by bots and many operations //! can be made much more efficient by not tracking it. /// Number of columns in a matrix. pub const COLUMNS: i16 = 10; /// Bitboard representation of a full row. pub const FULL_ROW: u16 = u16::MAX; /// Bitboard representation of an empty row. pub const EMPTY_ROW: u16 = !((1u16 << COLUMNS) - 1); /// Represents a "slice" to a tetris matrix bitboard. /// /// Bitboards are represented rowwise, with each row represented by a u16 holding bits /// describing if a cell is occupied (1) or not (0). The least significant bit describes /// the leftmost column, and the most significant bits are all set, even past the logical /// end of the matrix (columns 11+). /// /// Logically, a matrix is considered infinite in every direction. Cells below the bottom /// or beyond the left/right sides are all considered occupied. Cells above the physical /// top of the matrix are considered unoccupied. #[derive(Eq, PartialEq, Hash)] #[repr(transparent)] pub struct Mat([u16]); impl Mat { /// Constructs a new matrix from a slice of rowwise bitboard data. pub const fn new(data: &[u16]) -> &Self { if data.len() >= i16::MAX as usize { panic!("matrix height overflows i16"); } unsafe { core::mem::transmute(data) } } pub const EMPTY: &'static Self = Self::new(&[]); /// Returns the number of columns in the matrix. This always returns `COLUMNS`. #[inline] pub const fn cols(&self) -> i16 { COLUMNS } /// Returns the number of rows in the matrix. #[inline] pub const fn rows(&self) -> i16 { // XXX(iitalics): this is guarunteed not to wrap, since we check len in `new`. self.0.len() as i16 } /// Returns true if the cells in row `y` selected by `mask` match the pattern `test`. #[inline] pub fn test_row(&self, y: i16, mask: u16, test: u16) -> bool { (self[y] & mask) == test } /// Returns true if the cell at `(x,y)` is occupied. #[inline] pub fn get(&self, x: i16, y: i16) -> bool { if (0..COLUMNS).contains(&x) { self.test_row(y, 1 << x, 1 << x) } else { true } } } impl core::ops::Index for Mat { type Output = u16; fn index(&self, y: i16) -> &u16 { if y < 0 { &FULL_ROW } else { self.0.get(y as usize).unwrap_or(&EMPTY_ROW) } } } impl core::ops::Index> for Mat { type Output = [u16]; fn index(&self, r: core::ops::RangeTo) -> &[u16] { let y = core::cmp::max(r.end, 0); let y = core::cmp::min(y as usize, self.0.len()); &self.0[..y] } } impl core::ops::Index for Mat { type Output = [u16]; fn index(&self, _: core::ops::RangeFull) -> &[u16] { &self.0 } } impl core::fmt::Debug for Mat { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { write!(f, "mat!{{")?; let mut sep = ""; for y in (0..self.rows()).rev() { write!(f, "{sep}\"")?; for x in 0..self.cols() { let occ = self.get(x, y); f.write_str(if occ { "x" } else { "." })?; } write!(f, "\"")?; sep = ";"; } write!(f, "}}") } } #[cfg(any(feature = "ascii", test))] #[doc(hidden)] pub mod __ascii { use super::*; pub const fn parse(strs: [&str; N]) -> [u16; N] { let mut data = [EMPTY_ROW; N]; let mut i = 0; while i < N { let row = strs[i].as_bytes(); if row.len() != COLUMNS as usize { panic!("wrong number of columns in ascii row"); } let y = N - i - 1; let mut x = 0i16; while x < COLUMNS { match row[x as usize] { b'.' | b'_' | b' ' => {} _ => data[y] |= 1 << x, } x += 1; } i += 1; } data } } /// Wrapper struct for using an underlying buffer (such as an array or vec) as a /// "writable" matrix. This allows operations such as changing if a cell is occupied or /// not. /// /// [`MatBuf`] implements [`Deref`], so it automatically inherits the methods of [`Mat`]. #[derive(Clone, Default)] pub struct MatBuf = [u16; 40]> { buffer: T, rows: usize, } impl MatBuf<[u16; N]> { /// Returns a new empty [`MatBuf`] backed by a fixed-size array. pub fn new() -> Self { Self { buffer: [0u16; N], rows: 0, } } } impl MatBuf where T: AsRef<[u16]>, { /// Returns the underyling buffer. pub fn into_inner(self) -> T { self.buffer } /// Returns a read-only view of this matrix. #[inline] pub fn as_mat(&self) -> &Mat { Mat::new(&self.buffer.as_ref()[..self.rows]) } /// Resets the matrix so it is empty. pub fn clear(&mut self) { self.rows = 0; } } impl MatBuf where T: AsRef<[u16]> + AsMut<[u16]>, { /// Modifies the cells in this matrix to be identical to those in `mat`. /// /// Panics if the buffer space cannot fit the rows of `mat`. pub fn copy_from(&mut self, mat: &Mat) { let mat_data = &mat[..]; let buf_data = self.buffer.as_mut(); if mat_data.len() > buf_data.len() { panic!("matrix cannot fit in available buffer space"); } self.rows = mat_data.len(); buf_data[..self.rows].copy_from_slice(mat_data); } pub fn fill_row(&mut self, y: i16, mask: u16) { if y < 0 { // OOB coordinates are considered already set return; } let y = y as usize; let buf_data = self.buffer.as_mut(); while y >= self.rows { *buf_data .get_mut(self.rows) .expect("y should be within available buffer space") = EMPTY_ROW; self.rows += 1; } buf_data[y] |= mask; } /// Fills in the cell at the given (x,y) coordinate. Adds new rows to the top of the /// matrix if necessary. /// /// Panics if the buffer space cannot fit the new rows. #[inline] pub fn set(&mut self, x: i16, y: i16) { if (0..COLUMNS).contains(&x) { self.fill_row(y, 1 << x); } } /// Removes any rows that are completely filled, shifting rows above down. Returns a /// new view of the buffer that only includes the remaining rows. pub fn clear_lines(&mut self) { let data = self.buffer.as_mut(); let mut dst_y = 0; for y in 0..self.rows { if data[y] != FULL_ROW && data[y] != EMPTY_ROW { data[dst_y] = data[y]; dst_y += 1; } } self.rows = dst_y; } } // All boilerplate below impl> core::ops::Deref for MatBuf { type Target = Mat; fn deref(&self) -> &Mat { self.as_mat() } } impl> core::fmt::Debug for MatBuf { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { self.as_mat().fmt(f) } } impl> core::cmp::Eq for MatBuf {} impl> core::cmp::PartialEq for MatBuf { fn eq(&self, other: &Mat) -> bool { self.as_mat() == other } } impl> core::cmp::PartialEq<&Mat> for MatBuf { fn eq(&self, other: &&Mat) -> bool { self.as_mat() == *other } } impl, U: AsRef<[u16]>> core::cmp::PartialEq> for MatBuf { fn eq(&self, other: &MatBuf) -> bool { self.as_mat() == other.as_mat() } } #[cfg(test)] mod test { use super::*; use crate::mat; use alloc::vec::Vec; use core::ops::RangeInclusive; #[test] fn test_bit_constants() { for i in 0..16 { let m = 1u16 << i; let e = EMPTY_ROW & m != 0; let f = FULL_ROW & m != 0; assert!(f, "full, i={i}"); assert_eq!(e, i >= 10, "empty, i={i}"); } } const M1: &Mat = mat! { "...x....x."; "xx..xxxx.x"; }; const M2: &Mat = mat! { ".........x"; ".........x"; "x.......xx"; "xxxx.xxxxx"; }; #[test] fn test_dims() { assert_eq!(Mat::EMPTY.rows(), 0); assert_eq!(Mat::EMPTY.cols(), 10); assert_eq!(M1.rows(), 2); assert_eq!(M1.cols(), 10); assert_eq!(M2.rows(), 4); assert_eq!(M2.cols(), 10); } fn occ(m: &Mat, y: i16, xs: RangeInclusive) -> Vec { xs.map(|x| m.get(x, y)).collect() } #[test] #[allow(clippy::just_underscores_and_digits)] fn test_occupied() { // get row data as bools let __ = false; let xx = true; assert_eq!( occ(M1, 0, -1..=10), [xx, xx, xx, __, __, xx, xx, xx, xx, __, xx, xx] ); assert_eq!(occ(M1, 1, 0..=9), [__, __, __, xx, __, __, __, __, xx, __]); assert_eq!(occ(M2, 1, 0..=9), [xx, __, __, __, __, __, __, __, xx, xx],); // test oob circumstances for x in -16..=16 { let oob = !(0..COLUMNS).contains(&x); assert_eq!(M1.get(x, 2), oob, "M1,x={x},y=2"); assert_eq!(M1.get(x, 3), oob, "M1,x={x},y=3"); assert_eq!(M2.get(x, 4), oob, "M2,x={x},y=4"); assert_eq!(M2.get(x, 5), oob, "M2,x={x},y=5"); assert_eq!(M1.get(x, 16), oob, "M1,x={x},y=16"); assert_eq!(M2.get(x, 17), oob, "M2,x={x},y=17"); for y in -4..0 { assert!(M1.get(x, y), "M1,x={x},y={y}"); assert!(M2.get(x, y), "M2,x={x},y={y}"); } } } #[test] fn test_mat_buf_copy_from() { let mut buf: MatBuf = MatBuf::new(); assert_eq!(buf, Mat::EMPTY); assert_eq!(buf.rows(), 0); let mat = mat! { "xxx......."; "xx........"; "x........."; }; buf.copy_from(mat); assert_eq!(buf, mat); assert_eq!(buf.rows(), 3); } #[test] fn test_clear_lines() { let mat0 = mat! { ".........."; // clear ".........."; // clear "x........."; ".........."; // clear ".x.xxxxxxx"; "xxxxxxxxxx"; // clear "x.xxxxxxxx"; }; let mat1 = mat! { "x........."; ".x.xxxxxxx"; "x.xxxxxxxx"; }; let mut buf: MatBuf<[u16; 7]> = MatBuf::new(); assert_eq!(buf.rows(), 0); buf.copy_from(mat0); assert_eq!(buf.rows(), 7); buf.clear_lines(); assert_eq!(buf, mat1); assert_eq!(buf.rows(), 3); } #[test] fn test_set() { let mut buf: MatBuf<[u16; 4]> = MatBuf::new(); buf.set(0, 0); // a buf.set(9, 3); // b buf.set(1, 1); // c buf.set(2, 1); // d buf.set(3, 1); // e assert!(buf.get(0, 0)); assert!(buf.get(9, 3)); assert!(buf.get(1, 1)); assert!(buf.get(2, 1)); assert!(buf.get(3, 1)); let mat = mat! { ".........b"; ".........."; ".cde......"; "a........."; }; assert_eq!(buf, mat); } #[test] fn test_fill() { let mut buf: MatBuf<[u16; 5]> = MatBuf::new(); buf.fill_row(1, 0b110111); // a let mat = mat! { "aaa.aa...."; ".........."; }; assert_eq!(buf, mat); buf.fill_row(3, 0b1000000000); // b buf.fill_row(0, u16::MAX); // c let mat = mat! { ".........b"; ".........."; "aaa.aa...."; "cccccccccc"; }; assert_eq!(buf, mat); } #[test] #[should_panic] fn test_set_oob() { let mut buf: MatBuf<[u16; 4]> = MatBuf::new(); buf.set(0, 4); } #[test] #[should_panic] fn test_fill_oob() { let mut buf: MatBuf<[u16; 4]> = MatBuf::new(); buf.fill_row(4, 0b1001); } }