1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
use std::cmp;
use std::error;
use std::fmt;
use std::result;

use ast;
use hir;

/// A type alias for dealing with errors returned by this crate.
pub type Result<T> = result::Result<T, Error>;

/// This error type encompasses any error that can be returned by this crate.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum Error {
    /// An error that occurred while translating concrete syntax into abstract
    /// syntax (AST).
    Parse(ast::Error),
    /// An error that occurred while translating abstract syntax into a high
    /// level intermediate representation (HIR).
    Translate(hir::Error),
    /// Hints that destructuring should not be exhaustive.
    ///
    /// This enum may grow additional variants, so this makes sure clients
    /// don't count on exhaustive matching. (Otherwise, adding a new variant
    /// could break existing code.)
    #[doc(hidden)]
    __Nonexhaustive,
}

impl From<ast::Error> for Error {
    fn from(err: ast::Error) -> Error {
        Error::Parse(err)
    }
}

impl From<hir::Error> for Error {
    fn from(err: hir::Error) -> Error {
        Error::Translate(err)
    }
}

impl error::Error for Error {
    fn description(&self) -> &str {
        match *self {
            Error::Parse(ref x) => x.description(),
            Error::Translate(ref x) => x.description(),
            _ => unreachable!(),
        }
    }
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Error::Parse(ref x) => x.fmt(f),
            Error::Translate(ref x) => x.fmt(f),
            _ => unreachable!(),
        }
    }
}

/// A helper type for formatting nice error messages.
///
/// This type is responsible for reporting regex parse errors in a nice human
/// readable format. Most of its complexity is from interspersing notational
/// markers pointing out the position where an error occurred.
#[derive(Debug)]
pub struct Formatter<'e, E: 'e> {
    /// The original regex pattern in which the error occurred.
    pattern: &'e str,
    /// The error kind. It must impl fmt::Display.
    err: &'e E,
    /// The primary span of the error.
    span: &'e ast::Span,
    /// An auxiliary and optional span, in case the error needs to point to
    /// two locations (e.g., when reporting a duplicate capture group name).
    aux_span: Option<&'e ast::Span>,
}

impl<'e> From<&'e ast::Error> for Formatter<'e, ast::ErrorKind> {
    fn from(err: &'e ast::Error) -> Self {
        Formatter {
            pattern: err.pattern(),
            err: err.kind(),
            span: err.span(),
            aux_span: err.auxiliary_span(),
        }
    }
}

impl<'e> From<&'e hir::Error> for Formatter<'e, hir::ErrorKind> {
    fn from(err: &'e hir::Error) -> Self {
        Formatter {
            pattern: err.pattern(),
            err: err.kind(),
            span: err.span(),
            aux_span: None,
        }
    }
}

impl<'e, E: fmt::Display> fmt::Display for Formatter<'e, E> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let spans = Spans::from_formatter(self);
        if self.pattern.contains('\n') {
            let divider = repeat_char('~', 79);

            writeln!(f, "regex parse error:")?;
            writeln!(f, "{}", divider)?;
            let notated = spans.notate();
            write!(f, "{}", notated)?;
            writeln!(f, "{}", divider)?;
            // If we have error spans that cover multiple lines, then we just
            // note the line numbers.
            if !spans.multi_line.is_empty() {
                let mut notes = vec![];
                for span in &spans.multi_line {
                    notes.push(format!(
                        "on line {} (column {}) through line {} (column {})",
                        span.start.line, span.start.column,
                        span.end.line, span.end.column - 1));
                }
                writeln!(f, "{}", notes.join("\n"))?;
            }
            write!(f, "error: {}", self.err)?;
        } else {
            writeln!(f, "regex parse error:")?;
            let notated = Spans::from_formatter(self).notate();
            write!(f, "{}", notated)?;
            write!(f, "error: {}", self.err)?;
        }
        Ok(())
    }
}

/// This type represents an arbitrary number of error spans in a way that makes
/// it convenient to notate the regex pattern. ("Notate" means "point out
/// exactly where the error occurred in the regex pattern.")
///
/// Technically, we can only ever have two spans given our current error
/// structure. However, after toiling with a specific algorithm for handling
/// two spans, it became obvious that an algorithm to handle an arbitrary
/// number of spans was actually much simpler.
struct Spans<'p> {
    /// The original regex pattern string.
    pattern: &'p str,
    /// The total width that should be used for line numbers. The width is
    /// used for left padding the line numbers for alignment.
    ///
    /// A value of `0` means line numbers should not be displayed. That is,
    /// the pattern is itself only one line.
    line_number_width: usize,
    /// All error spans that occur on a single line. This sequence always has
    /// length equivalent to the number of lines in `pattern`, where the index
    /// of the sequence represents a line number, starting at `0`. The spans
    /// in each line are sorted in ascending order.
    by_line: Vec<Vec<ast::Span>>,
    /// All error spans that occur over one or more lines. That is, the start
    /// and end position of the span have different line numbers. The spans are
    /// sorted in ascending order.
    multi_line: Vec<ast::Span>,
}

impl<'p> Spans<'p> {
    /// Build a sequence of spans from a formatter.
    fn from_formatter<'e, E: fmt::Display>(
        fmter: &'p Formatter<'e, E>,
    ) -> Spans<'p> {
        let mut line_count = fmter.pattern.lines().count();
        // If the pattern ends with a `\n` literal, then our line count is
        // off by one, since a span can occur immediately after the last `\n`,
        // which is consider to be an additional line.
        if fmter.pattern.ends_with('\n') {
            line_count += 1;
        }
        let line_number_width =
            if line_count <= 1 {
                0
            } else {
                line_count.to_string().len()
            };
        let mut spans = Spans {
            pattern: &fmter.pattern,
            line_number_width: line_number_width,
            by_line: vec![vec![]; line_count],
            multi_line: vec![],
        };
        spans.add(fmter.span.clone());
        if let Some(span) = fmter.aux_span {
            spans.add(span.clone());
        }
        spans
    }

    /// Add the given span to this sequence, putting it in the right place.
    fn add(&mut self, span: ast::Span) {
        // This is grossly inefficient since we sort after each add, but right
        // now, we only ever add two spans at most.
        if span.is_one_line() {
            let i = span.start.line - 1; // because lines are 1-indexed
            self.by_line[i].push(span);
            self.by_line[i].sort();
        } else {
            self.multi_line.push(span);
            self.multi_line.sort();
        }
    }

    /// Notate the pattern string with carents (`^`) pointing at each span
    /// location. This only applies to spans that occur within a single line.
    fn notate(&self) -> String {
        let mut notated = String::new();
        for (i, line) in self.pattern.lines().enumerate() {
            if self.line_number_width > 0 {
                notated.push_str(&self.left_pad_line_number(i + 1));
                notated.push_str(": ");
            } else {
                notated.push_str("    ");
            }
            notated.push_str(line);
            notated.push('\n');
            if let Some(notes) = self.notate_line(i) {
                notated.push_str(&notes);
                notated.push('\n');
            }
        }
        notated
    }

    /// Return notes for the line indexed at `i` (zero-based). If there are no
    /// spans for the given line, then `None` is returned. Otherwise, an
    /// appropriately space padded string with correctly positioned `^` is
    /// returned, accounting for line numbers.
    fn notate_line(&self, i: usize) -> Option<String> {
        let spans = &self.by_line[i];
        if spans.is_empty() {
            return None;
        }
        let mut notes = String::new();
        for _ in 0..self.line_number_padding() {
            notes.push(' ');
        }
        let mut pos = 0;
        for span in spans {
            for _ in pos..(span.start.column - 1) {
                notes.push(' ');
                pos += 1;
            }
            let note_len = span.end.column.saturating_sub(span.start.column);
            for _ in 0..cmp::max(1, note_len) {
                notes.push('^');
                pos += 1;
            }
        }
        Some(notes)
    }

    /// Left pad the given line number with spaces such that it is aligned with
    /// other line numbers.
    fn left_pad_line_number(&self, n: usize) -> String {
        let n = n.to_string();
        let pad = self.line_number_width.checked_sub(n.len()).unwrap();
        let mut result = repeat_char(' ', pad);
        result.push_str(&n);
        result
    }

    /// Return the line number padding beginning at the start of each line of
    /// the pattern.
    ///
    /// If the pattern is only one line, then this returns a fixed padding
    /// for visual indentation.
    fn line_number_padding(&self) -> usize {
        if self.line_number_width == 0 {
            4
        } else {
            2 + self.line_number_width
        }
    }
}

fn repeat_char(c: char, count: usize) -> String {
    ::std::iter::repeat(c).take(count).collect()
}

#[cfg(test)]
mod tests {
    use ast::parse::Parser;

    fn assert_panic_message(pattern: &str, expected_msg: &str) -> () {
        let result = Parser::new().parse(pattern);
        match result {
            Ok(_) => {
                panic!("regex should not have parsed");
            }
            Err(err) => {
                assert_eq!(err.to_string(), expected_msg.trim());
            }
        }
    }

    // See: https://github.com/rust-lang/regex/issues/464
    #[test]
    fn regression_464() {
        let err = Parser::new().parse("a{\n").unwrap_err();
        // This test checks that the error formatter doesn't panic.
        assert!(!err.to_string().is_empty());
    }

    // See: https://github.com/rust-lang/regex/issues/545
    #[test]
    fn repetition_quantifier_expects_a_valid_decimal() {
        assert_panic_message(r"\\u{[^}]*}", r#"
regex parse error:
    \\u{[^}]*}
        ^
error: repetition quantifier expects a valid decimal
"#);
    }
}