; ; Copyright (c) 2020 Raspberry Pi (Trading) Ltd. ; ; SPDX-License-Identifier: BSD-3-Clause ; .program swo_manchester_tx .side_set 1 opt ; Transmit one bit every 12 cycles. a '0' is encoded as a high-low sequence ; (each part lasting half a bit period, or 6 cycles) and a '1' is encoded as a ; low-high sequence. ; ; Side-set bit 0 must be mapped to the GPIO used for TX. ; Autopull must be enabled -- this program does not care about the threshold. ; The program starts at the public label 'start'. .wrap_target do_1: nop side 0 [5] ; Low for 6 cycles (5 delay, +1 for nop) jmp get_bit side 1 [3] ; High for 4 cycles. 'get_bit' takes another 2 cycles do_0: nop side 1 [5] ; Output high for 6 cycles nop side 0 [3] ; Output low for 4 cycles public start: get_bit: out x, 1 ; Always shift out one bit from OSR to X, so we can jmp !x do_0 ; branch on it. Autopull refills the OSR when empty. .wrap % c-sdk { static inline void swo_manchester_tx_program_init(PIO pio, uint sm, uint offset, uint pin, float div) { pio_sm_set_pins_with_mask(pio, sm, 0, 1u << pin); pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true); pio_gpio_init(pio, pin); pio_sm_config c = swo_manchester_tx_program_get_default_config(offset); sm_config_set_sideset_pins(&c, pin); sm_config_set_out_shift(&c, true, true, 32); sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX); sm_config_set_clkdiv(&c, div); pio_sm_init(pio, sm, offset + swo_manchester_tx_offset_start, &c); pio_sm_set_enabled(pio, sm, true); } %} .program swo_manchester_rx ; Assumes line is idle low, first bit is 0 ; One bit is 12 cycles ; a '0' is encoded as 10 ; a '1' is encoded as 01 ; ; Both the IN base and the JMP pin mapping must be pointed at the GPIO used for RX. ; Autopush must be enabled. ; Before enabling the SM, it should be placed in a 'wait 1, pin` state, so that ; it will not start sampling until the initial line idle state ends. start_of_0: ; We are 0.25 bits into a 0 - signal is high wait 0 pin 0 ; Wait for the 1->0 transition - at this point we are 0.5 into the bit in y, 1 [8] ; Emit a 0, sleep 3/4 of a bit jmp pin start_of_0 ; If signal is 1 again, it's another 0 bit, otherwise it's a 1 .wrap_target start_of_1: ; We are 0.25 bits into a 1 - signal is 1 wait 1 pin 0 ; Wait for the 0->1 transition - at this point we are 0.5 into the bit in x, 1 [8] ; Emit a 1, sleep 3/4 of a bit jmp pin start_of_0 ; If signal is 0 again, it's another 1 bit otherwise it's a 0 .wrap % c-sdk { static inline void swo_manchester_rx_program_init(PIO pio, uint sm, uint offset, uint pin, float div) { pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, false); pio_gpio_init(pio, pin); pio_sm_config c = swo_manchester_rx_program_get_default_config(offset); sm_config_set_in_pins(&c, pin); // for WAIT sm_config_set_jmp_pin(&c, pin); // for JMP sm_config_set_in_shift(&c, true, true, 32); sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX); sm_config_set_clkdiv(&c, div); pio_sm_init(pio, sm, offset, &c); // X and Y are set to 0 and 1, to conveniently emit these to ISR/FIFO. pio_sm_exec(pio, sm, pio_encode_set(pio_x, 1)); pio_sm_exec(pio, sm, pio_encode_set(pio_y, 0)); // Assume line is idle low, and first transmitted bit is 0. Put SM in a // wait state before enabling. RX will begin once the first 0 symbol is // detected. pio_sm_exec(pio, sm, pio_encode_wait_pin(1, 0) | pio_encode_delay(2)); pio_sm_set_enabled(pio, sm, true); } %}