/* * This file is part of the Black Magic Debug project. * * Copyright (C) 2022 1BitSquared * Written by Rachel Mant * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #if defined(STM32F0) || defined(STM32F1) || defined(STM32F3) || defined(STM32F4) #include #include #elif defined(LM4F) #include #else #error "Unknown processor target" #endif #include #include #include "general.h" #include "usbuart.h" #include "usb.h" #include "aux_serial.h" #if defined(STM32F0) || defined(STM32F1) || defined(STM32F3) || defined(STM32F4) static char aux_serial_transmit_buffer[2U][TX_BUF_SIZE]; static uint8_t aux_serial_transmit_buffer_index; static uint8_t aux_serial_transmit_buffer_consumed; #elif defined(LM4F) static char aux_serial_transmit_buffer[FIFO_SIZE]; #endif void aux_serial_set_encoding(struct usb_cdc_line_coding *coding) { usart_set_baudrate(USBUSART, coding->dwDTERate); #if defined(STM32F0) || defined(STM32F1) || defined(STM32F3) || defined(STM32F4) if (coding->bParityType) usart_set_databits(USBUSART, (coding->bDataBits + 1 <= 8 ? 8 : 9)); else usart_set_databits(USBUSART, (coding->bDataBits <= 8 ? 8 : 9)); #elif defined(LM4F) uart_set_databits(USBUART, coding->bDataBits); #endif switch(coding->bCharFormat) { case 0: usart_set_stopbits(USBUSART, USART_STOPBITS_1); break; case 1: usart_set_stopbits(USBUSART, USART_STOPBITS_1_5); break; case 2: default: usart_set_stopbits(USBUSART, USART_STOPBITS_2); break; } switch(coding->bParityType) { case 0: usart_set_parity(USBUSART, USART_PARITY_NONE); break; case 1: usart_set_parity(USBUSART, USART_PARITY_ODD); break; case 2: default: usart_set_parity(USBUSART, USART_PARITY_EVEN); break; } } #if defined(STM32F0) || defined(STM32F1) || defined(STM32F3) || defined(STM32F4) char *aux_serial_current_transmit_buffer(void) { return aux_serial_transmit_buffer[aux_serial_transmit_buffer_index]; } size_t aux_serial_transmit_buffer_fullness(void) { return aux_serial_transmit_buffer_consumed; } /* * Changes USBUSART TX buffer in which data is accumulated from USB. * Filled buffer is submitted to DMA for transfer. */ void aux_serial_switch_transmit_buffers(void) { /* Make the buffer we've been filling the active DMA buffer, and swap to the other */ dma_set_memory_address(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN, (uintptr_t)aux_serial_current_transmit_buffer()); dma_set_number_of_data(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN, aux_serial_transmit_buffer_consumed); dma_enable_channel(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN); /* Change active buffer */ aux_serial_transmit_buffer_consumed = 0; aux_serial_transmit_buffer_index ^= 1; } void aux_serial_send(const size_t len) { aux_serial_transmit_buffer_consumed += len; /* If DMA is idle, schedule new transfer */ if (len && aux_serial_transmit_complete) { aux_serial_transmit_complete = false; aux_serial_switch_transmit_buffers(); /* Enable LED */ usbuart_set_led_state(TX_LED_ACT, true); } } #elif defined(LM4F) char *aux_serial_current_transmit_buffer(void) { return aux_serial_transmit_buffer; } size_t aux_serial_transmit_buffer_fullness(void) { return 0; } void aux_serial_send(const size_t len) { for(size_t i = 0; i < len; ++i) uart_send_blocking(USBUART, aux_serial_transmit_buffer[i]); } #endif