/* MSPDebug - debugging tool for the eZ430 * Copyright (C) 2009, 2010 Daniel Beer * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * Various constants and tables come from uif430, written by Robert * Kavaler (kavaler@diva.com). This is available under the same license * as this program, from www.relavak.com. */ #include #include #include #include #include #include "util.h" #include "device.h" static const struct fet_transport *fet_transport; static int fet_is_rf2500; /********************************************************************** * FET command codes. * * These come from uif430 by Robert Kavaler (kavaler@diva.com). * www.relavak.com */ #define C_INITIALIZE 1 #define C_CLOSE 2 #define C_IDENTIFY 3 #define C_DEVICE 4 #define C_CONFIGURE 5 #define C_VCC 6 #define C_RESET 7 #define C_READREGISTERS 8 #define C_WRITEREGISTERS 9 #define C_READREGISTER 10 #define C_WRITEREGISTER 11 #define C_ERASE 12 #define C_READMEMORY 13 #define C_WRITEMEMORY 14 #define C_FASTFLASHER 15 #define C_BREAKPOINT 16 #define C_RUN 17 #define C_STATE 18 #define C_SECURE 19 #define C_VERIFYMEMORY 20 #define C_FASTVERIFYMEMORY 21 #define C_ERASECHECK 22 #define C_EEMOPEN 23 #define C_EEMREADREGISTER 24 #define C_EEMREADREGISTERTEST 25 #define C_EEMWRITEREGISTER 26 #define C_EEMCLOSE 27 #define C_ERRORNUMBER 28 #define C_GETCURVCCT 29 #define C_GETEXTVOLTAGE 30 #define C_FETSELFTEST 31 #define C_FETSETSIGNALS 32 #define C_FETRESET 33 #define C_READI2C 34 #define C_WRITEI2C 35 #define C_ENTERBOOTLOADER 36 /* Constants for parameters of various FET commands */ #define FET_RUN_FREE 1 #define FET_RUN_STEP 2 #define FET_RUN_BREAKPOINT 3 #define FET_RESET_PUC 0x01 #define FET_RESET_RST 0x02 #define FET_RESET_VCC 0x04 #define FET_RESET_ALL 0x07 #define FET_ERASE_SEGMENT 0 #define FET_ERASE_MAIN 1 #define FET_ERASE_ALL 2 #define FET_POLL_RUNNING 0x01 #define FET_POLL_BREAKPOINT 0x02 /********************************************************************* * Checksum calculation */ static u_int16_t code_left[65536]; /* Initialise the code table. The code table is a function which takes * us from one checksum position code to the next. */ static void init_codes(void) { int i; for (i = 0; i < 65536; i++) { u_int16_t right = i << 1; if (i & 0x8000) right ^= 0x0811; code_left[right] = i; } } /* Calculate the checksum over the given payload and return it. This checksum * needs to be stored in little-endian format at the end of the payload. */ static u_int16_t calc_checksum(const u_int8_t *data, int len) { int i; u_int16_t cksum = 0xffff; u_int16_t code = 0x8408; for (i = len * 8; i; i--) cksum = code_left[cksum]; for (i = len - 1; i >= 0; i--) { int j; u_int8_t c = data[i]; for (j = 0; j < 8; j++) { if (c & 0x80) cksum ^= code; code = code_left[code]; c <<= 1; } } return cksum ^ 0xffff; } /********************************************************************* * FET packet transfer. This level of the interface deals in packets * send to/from the device. */ /* This is a type of data transfer which appears to be unique to * the RF2500. Blocks of data are sent to an internal buffer. Each * block is prefixed with a buffer offset and a payload length. * * No checksums are included. */ static int send_rf2500_data(const u_int8_t *data, int len) { int offset = 0; assert (fet_transport != NULL); while (len) { u_int8_t pbuf[63]; int plen = len > 59 ? 59 : len; pbuf[0] = 0x83; pbuf[1] = offset & 0xff; pbuf[2] = offset >> 8; pbuf[3] = plen; memcpy(pbuf + 4, data, plen); if (fet_transport->send(pbuf, plen + 4) < 0) return -1; data += plen; len -= plen; offset += plen; } return 0; } static u_int8_t fet_buf[65538]; static int fet_len; #define MAX_PARAMS 16 /* Recieved packet is parsed into this struct */ static struct { int command_code; int state; int argc; u_int32_t argv[MAX_PARAMS]; u_int8_t *data; int datalen; } fet_reply; #define BUFFER_BYTE(b, x) ((int)((u_int8_t *)(b))[x]) #define BUFFER_WORD(b, x) ((BUFFER_BYTE(b, x + 1) << 8) | BUFFER_BYTE(b, x)) #define BUFFER_LONG(b, x) ((BUFFER_WORD(b, x + 2) << 16) | BUFFER_WORD(b, x)) #define PTYPE_ACK 0 #define PTYPE_CMD 1 #define PTYPE_PARAM 2 #define PTYPE_DATA 3 #define PTYPE_MIXED 4 #define PTYPE_NAK 5 #define PTYPE_FLASH_ACK 6 /* This table is taken from uif430 */ static const char *error_strings[] = { "No error", // 0 "Could not initialize device interface", // 1 "Could not close device interface", // 2 "Invalid parameter(s)", // 3 "Could not find device (or device not supported)", // 4 "Unknown device", // 5 "Could not read device memory", // 6 "Could not write device memory", // 7 "Could not read device configuration fuses", // 8 "Incorrectly configured device; device derivative not supported",// 9 "Could not set device Vcc", // 10 "Could not reset device", // 11 "Could not preserve/restore device memory", // 12 "Could not set device operating frequency", // 13 "Could not erase device memory", // 14 "Could not set device breakpoint", // 15 "Could not single step device", // 16 "Could not run device (to breakpoint)", // 17 "Could not determine device state", // 18 "Could not open Enhanced Emulation Module", // 19 "Could not read Enhanced Emulation Module register", // 20 "Could not write Enhanced Emulation Module register", // 21 "Could not close Enhanced Emulation Module", // 22 "File open error", // 23 "Could not determine file type", // 24 "Unexpected end of file encountered", // 25 "File input/output error", // 26 "File data error", // 27 "Verification error", // 28 "Could not blow device security fuse", // 29 "Could not access device - security fuse is blown", // 30 "Error within Intel Hex file", // 31 "Could not write device Register", // 32 "Could not read device Register", // 33 "Not supported by selected Interface", // 34 "Could not communicate with FET", // 35 "No external power supply detected", // 36 "External power too low", // 37 "External power detected", // 38 "External power too high", // 39 "Hardware Self Test Error", // 40 "Fast Flash Routine experienced a timeout", // 41 "Could not create thread for polling", // 42 "Could not initialize Enhanced Emulation Module", // 43 "Insufficient resources", // 44 "No clock control emulation on connected device", // 45 "No state storage buffer implemented on connected device", // 46 "Could not read trace buffer", // 47 "Enable the variable watch function", // 48 "No trigger sequencer implemented on connected device", // 49 "Could not read sequencer state - Sequencer is disabled", // 50 "Could not remove trigger - Used in sequencer", // 51 "Could not set combination - Trigger is used in sequencer", // 52 "Invalid error number", // 53 }; static int parse_packet(int plen) { u_int16_t c = calc_checksum(fet_buf + 2, plen - 2); u_int16_t r = BUFFER_WORD(fet_buf, plen); int i = 2; int type; int error; if (c != r) { fprintf(stderr, "fet: checksum error (calc %04x," " recv %04x)\n", c, r); return -1; } if (plen < 6) goto too_short; fet_reply.command_code = fet_buf[i++]; type = fet_buf[i++]; fet_reply.state = fet_buf[i++]; error = fet_buf[i++]; if (error) { fprintf(stderr, "fet: FET returned error code %d\n", error); if (error > 0 && error < ARRAY_LEN(error_strings)) { fprintf(stderr, " (%s)\n", error_strings[error]); } return -1; } /* Parse packet parameters */ if (type == PTYPE_PARAM || type == PTYPE_MIXED) { int j; if (i + 2 > plen) goto too_short; fet_reply.argc = BUFFER_WORD(fet_buf, i); i += 2; if (fet_reply.argc >= MAX_PARAMS) { fprintf(stderr, "fet: too many params: %d\n", fet_reply.argc); return -1; } for (j = 0; j < fet_reply.argc; j++) { if (i + 4 > plen) goto too_short; fet_reply.argv[j] = BUFFER_LONG(fet_buf, i); i += 4; } } else { fet_reply.argc = 0; } /* Extract a pointer to the data */ if (type == PTYPE_DATA || type == PTYPE_MIXED) { if (i + 4 > plen) goto too_short; fet_reply.datalen = BUFFER_LONG(fet_buf, i); i += 4; if (i + fet_reply.datalen > plen) goto too_short; fet_reply.data = fet_buf + i; } else { fet_reply.data = NULL; fet_reply.datalen = 0; } return 0; too_short: fprintf(stderr, "fet: too short (%d bytes)\n", plen); return -1; } static int recv_packet(void) { int plen = BUFFER_WORD(fet_buf, 0); assert (fet_transport != NULL); /* If there's a packet still here from last time, get rid of it */ if (fet_len >= plen + 2) { memmove(fet_buf, fet_buf + plen + 2, fet_len - plen - 2); fet_len -= plen + 2; } /* Keep adding data to the buffer until we have a complete packet */ for (;;) { int len; plen = BUFFER_WORD(fet_buf, 0); if (fet_len >= plen + 2) return parse_packet(plen); len = fet_transport->recv(fet_buf + fet_len, sizeof(fet_buf) - fet_len); if (len < 0) return -1; fet_len += len; } return -1; } static int send_command(int command_code, const u_int32_t *params, int nparams, const u_int8_t *extra, int exlen) { u_int8_t datapkt[256]; int len = 0; u_int8_t buf[512]; u_int16_t cksum; int i = 0; int j; assert (len + exlen + 2 <= sizeof(datapkt)); assert (fet_transport != NULL); /* Command code and packet type */ datapkt[len++] = command_code; datapkt[len++] = ((nparams > 0) ? 1 : 0) + ((exlen > 0) ? 2 : 0) + 1; /* Optional parameters */ if (nparams > 0) { datapkt[len++] = nparams & 0xff; datapkt[len++] = nparams >> 8; for (j = 0; j < nparams; j++) { u_int32_t p = params[j]; datapkt[len++] = p & 0xff; p >>= 8; datapkt[len++] = p & 0xff; p >>= 8; datapkt[len++] = p & 0xff; p >>= 8; datapkt[len++] = p & 0xff; } } /* Extra data */ if (extra) { int x = exlen; datapkt[len++] = x & 0xff; x >>= 8; datapkt[len++] = x & 0xff; x >>= 8; datapkt[len++] = x & 0xff; x >>= 8; datapkt[len++] = x & 0xff; memcpy(datapkt + len, extra, exlen); len += exlen; } /* Checksum */ cksum = calc_checksum(datapkt, len); datapkt[len++] = cksum & 0xff; datapkt[len++] = cksum >> 8; /* Copy into buf, escaping special characters and adding * delimeters. */ buf[i++] = 0x7e; for (j = 0; j < len; j++) { char c = datapkt[j]; if (c == 0x7e || c == 0x7d) { buf[i++] = 0x7d; c ^= 0x20; } buf[i++] = c; } buf[i++] = 0x7e; assert (i < sizeof(buf)); return fet_transport->send(buf, i); } static int xfer(int command_code, const u_int8_t *data, int datalen, int nparams, ...) { u_int32_t params[MAX_PARAMS]; int i; va_list ap; assert (nparams <= MAX_PARAMS); va_start(ap, nparams); for (i = 0; i < nparams; i++) params[i] = va_arg(ap, unsigned int); va_end(ap); if (data && fet_is_rf2500) { if (send_rf2500_data(data, datalen) < 0) return -1; if (send_command(command_code, params, nparams, NULL, 0) < 0) return -1; } else if (send_command(command_code, params, nparams, data, datalen) < 0) return -1; if (recv_packet() < 0) return -1; if (fet_reply.command_code != command_code) { fprintf(stderr, "fet: reply type mismatch\n"); return -1; } return 0; } /********************************************************************** * MSP430 high-level control functions */ static int fet_version; static int do_identify(void) { if (fet_version < 20300000) { char idtext[64]; if (xfer(C_IDENTIFY, NULL, 0, 2, 70, 0) < 0) return -1; if (!fet_reply.data) { fprintf(stderr, "fet: missing info\n"); return -1; } memcpy(idtext, fet_reply.data + 4, 32); idtext[32] = 0; printf("Device: %s\n", idtext); return 0; } if (xfer(0x28, NULL, 0, 2, 0, 0) < 0) return -1; if (fet_reply.datalen < 2) { fprintf(stderr, "fet: missing info\n"); return -1; } print_devid((fet_reply.data[0] << 8) | fet_reply.data[1]); return 0; } static void fet_close(void) { if (xfer(C_RUN, NULL, 0, 2, FET_RUN_FREE, 1) < 0) fprintf(stderr, "fet: failed to restart CPU\n"); if (xfer(C_CLOSE, NULL, 0, 1, 0) < 0) fprintf(stderr, "fet: close command failed\n"); fet_transport->close(); fet_transport = NULL; } static int do_reset(void) { if (xfer(C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0) { fprintf(stderr, "fet: reset failed\n"); return -1; } return 0; } static int do_run(int type) { if (xfer(C_RUN, NULL, 0, 2, type, 0) < 0) { fprintf(stderr, "fet: failed to restart CPU\n"); return -1; } return 0; } static int do_halt(void) { if (xfer(C_STATE, NULL, 0, 1, 1) < 0) { fprintf(stderr, "fet: failed to halt CPU\n"); return -1; } return 0; } static int do_erase(void) { if (xfer(C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0) { fprintf(stderr, "fet: reset before erase failed\n"); return -1; } if (xfer(C_CONFIGURE, NULL, 0, 2, 2, 0x26) < 0) { fprintf(stderr, "fet: config (1) failed\n"); return -1; } if (xfer(C_CONFIGURE, NULL, 0, 2, 5, 0) < 0) { fprintf(stderr, "fet: config (2) failed\n"); return -1; } if (xfer(C_ERASE, NULL, 0, 3, FET_ERASE_ALL, 0x1000, 0x100) < 0) { fprintf(stderr, "fet: erase command failed\n"); return -1; } return 0; } static int fet_wait(void) { for (;;) { /* Without this delay, breakpoints can get lost. */ if (usleep(500000) < 0) break; if (xfer(C_STATE, NULL, 0, 1, 0) < 0) { fprintf(stderr, "fet: polling failed\n"); return -1; } if (!(fet_reply.argv[0] & FET_POLL_RUNNING)) return 0; } return 1; } static int fet_control(device_ctl_t action) { switch (action) { case DEVICE_CTL_RESET: return do_reset(); case DEVICE_CTL_RUN: return do_run(FET_RUN_FREE); case DEVICE_CTL_RUN_BP: return do_run(FET_RUN_BREAKPOINT); case DEVICE_CTL_HALT: return do_halt(); case DEVICE_CTL_STEP: if (do_run(FET_RUN_STEP) < 0) return -1; if (fet_wait() < 0) return -1; return 0; case DEVICE_CTL_ERASE: return do_erase(); } return 0; } static int fet_breakpoint(u_int16_t addr) { if (xfer(C_BREAKPOINT, NULL, 0, 2, 0, addr) < 0) { fprintf(stderr, "fet: set breakpoint failed\n"); return -1; } return 0; } static int fet_getregs(u_int16_t *regs) { int i; if (xfer(C_READREGISTERS, NULL, 0, 0) < 0) return -1; if (fet_reply.datalen < DEVICE_NUM_REGS * 4) { fprintf(stderr, "fet: short reply (%d bytes)\n", fet_reply.datalen); return -1; } for (i = 0; i < DEVICE_NUM_REGS; i++) regs[i] = BUFFER_WORD(fet_reply.data, i * 4); return 0; } static int fet_setregs(const u_int16_t *regs) { u_int8_t buf[DEVICE_NUM_REGS * 4];; int i; int ret; memset(buf, 0, sizeof(buf)); for (i = 0; i < DEVICE_NUM_REGS; i++) { buf[i * 4] = regs[i] & 0xff; buf[i * 4 + 1] = regs[i] >> 8; } if (fet_is_rf2500) ret = xfer(C_WRITEREGISTERS, buf, sizeof(buf), 2, 0xffff, sizeof(buf)); else ret = xfer(C_WRITEREGISTERS, buf, sizeof(buf), 1, 0xffff); if (ret < 0) { fprintf(stderr, "fet: context set failed\n"); return -1; } return 0; } int fet_readmem(u_int16_t addr, u_int8_t *buffer, int count) { while (count) { int plen = count > 128 ? 128 : count; if (xfer(C_READMEMORY, NULL, 0, 2, addr, plen) < 0) { fprintf(stderr, "fet: failed to read " "from 0x%04x\n", addr); return -1; } if (fet_reply.datalen < plen) { fprintf(stderr, "fet: short data: " "%d bytes\n", fet_reply.datalen); return -1; } memcpy(buffer, fet_reply.data, plen); buffer += plen; count -= plen; addr += plen; } return 0; } int fet_writemem(u_int16_t addr, const u_int8_t *buffer, int count) { while (count) { int plen = count > 128 ? 128 : count; int ret; if (fet_is_rf2500) ret = xfer(C_WRITEMEMORY, buffer, plen, 2, addr, plen); else ret = xfer(C_WRITEMEMORY, buffer, plen, 1, addr); if (ret < 0) { fprintf(stderr, "fet: failed to write to 0x%04x\n", addr); return -1; } buffer += plen; count -= plen; addr += plen; } return 0; } const static struct device fet_device = { .close = fet_close, .control = fet_control, .wait = fet_wait, .breakpoint = fet_breakpoint, .getregs = fet_getregs, .setregs = fet_setregs, .readmem = fet_readmem, .writemem = fet_writemem }; const struct device *fet_open(const struct fet_transport *tr, int proto_flags, int vcc_mv) { fet_transport = tr; fet_is_rf2500 = proto_flags & FET_PROTO_RF2500; init_codes(); if (xfer(C_INITIALIZE, NULL, 0, 0) < 0) { fprintf(stderr, "fet: open failed\n"); return NULL; } fet_version = fet_reply.argv[0]; printf("FET protocol version is %d\n", fet_version); if (xfer(39, NULL, 0, 1, 4) < 0) { fprintf(stderr, "fet: init failed\n"); return NULL; } /* configure: Spy-Bi-Wire or JTAG */ if (xfer(C_CONFIGURE, NULL, 0, 2, 8, (proto_flags & FET_PROTO_SPYBIWIRE) ? 1 : 0) < 0) { fprintf(stderr, "fet: configure failed\n"); return NULL; } printf("Configured for %s\n", (proto_flags & FET_PROTO_SPYBIWIRE) ? "Spy-Bi-Wire" : "JTAG"); /* set VCC */ if (xfer(C_VCC, NULL, 0, 1, vcc_mv) < 0) { fprintf(stderr, "fet: set VCC failed\n"); return NULL; } printf("Set Vcc: %d mV\n", vcc_mv); /* Identify the chip */ if (do_identify() < 0) { fprintf(stderr, "fet: identify failed\n"); return NULL; } /* Who knows what this is. Without it, register reads don't work. * This is RF2500-specific. */ if (fet_is_rf2500) { static const u_int8_t data[] = { 0x00, 0x80, 0xff, 0xff, 0x00, 0x00, 0x00, 0x10, 0xff, 0x10, 0x40, 0x00, 0x00, 0x02, 0xff, 0x05, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x01, 0x00, 0x01, 0x00, 0xd7, 0x60, 0x00, 0x00, 0x00, 0x00, 0x08, 0x07, 0x10, 0x0e, 0xc4, 0x09, 0x70, 0x17, 0x58, 0x1b, 0x01, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x33, 0x0f, 0x1f, 0x0f, 0xff, 0xff }; if (xfer(0x29, data, sizeof(data), 4, 0, 0x39, 0x31, sizeof(data)) < 0) { fprintf(stderr, "fet: command 0x29 failed\n"); return NULL; } } return &fet_device; }