/* MSPDebug - debugging tool for the eZ430 * Copyright (C) 2009, 2010 Daniel Beer * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * Various constants and tables come from uif430, written by Robert * Kavaler (kavaler@diva.com). This is available under the same license * as this program, from www.relavak.com. */ #include #include #include #include #include #include #include "util.h" #include "fet.h" #include "fet_error.h" #include "fet_db.h" #include "output.h" #include "opdb.h" #include "uif.h" #include "olimex.h" #include "olimex_iso.h" #include "rf2500.h" #include "ti3410.h" #include "obl.h" /* Send data in separate packets, as in the RF2500 */ #define FET_PROTO_SEPARATE_DATA 0x01 /* Received packets have an extra trailing byte */ #define FET_PROTO_EXTRA_RECV 0x02 /* Command packets have no leading \x7e */ #define FET_PROTO_NOLEAD_SEND 0x04 /* The new identify method should always be used */ #define FET_PROTO_IDENTIFY_NEW 0x08 /* A reset on startup should always be performed */ #define FET_PROTO_FORCE_RESET 0x10 #define MAX_PARAMS 16 #define MAX_BLOCK_SIZE 4096 struct fet_device { struct device base; transport_t transport; int flags; int version; uint8_t fet_buf[65538]; int fet_len; /* Recieved packet is parsed into this struct */ struct { int command_code; int state; int argc; uint32_t argv[MAX_PARAMS]; uint8_t *data; int datalen; } fet_reply; }; /********************************************************************** * FET command codes. * * These come from uif430 by Robert Kavaler (kavaler@diva.com). * www.relavak.com */ #define C_INITIALIZE 0x01 #define C_CLOSE 0x02 #define C_IDENTIFY 0x03 #define C_DEVICE 0x04 #define C_CONFIGURE 0x05 #define C_VCC 0x06 #define C_RESET 0x07 #define C_READREGISTERS 0x08 #define C_WRITEREGISTERS 0x09 #define C_READREGISTER 0x0a #define C_WRITEREGISTER 0x0b #define C_ERASE 0x0c #define C_READMEMORY 0x0d #define C_WRITEMEMORY 0x0e #define C_FASTFLASHER 0x0f #define C_BREAKPOINT 0x10 #define C_RUN 0x11 #define C_STATE 0x12 #define C_SECURE 0x13 #define C_VERIFYMEMORY 0x14 #define C_FASTVERIFYMEMORY 0x15 #define C_ERASECHECK 0x16 #define C_EEMOPEN 0x17 #define C_EEMREADREGISTER 0x18 #define C_EEMREADREGISTERTEST 0x19 #define C_EEMWRITEREGISTER 0x1a #define C_EEMCLOSE 0x1b #define C_ERRORNUMBER 0x1c #define C_GETCURVCCT 0x1d #define C_GETEXTVOLTAGE 0x1e #define C_FETSELFTEST 0x1f #define C_FETSETSIGNALS 0x20 #define C_FETRESET 0x21 #define C_READI2C 0x22 #define C_WRITEI2C 0x23 #define C_ENTERBOOTLOADER 0x24 #define C_IDENT1 0x28 #define C_IDENT2 0x29 #define C_IDENT3 0x2b /* Constants for parameters of various FET commands */ #define FET_CONFIG_VERIFICATION 0 #define FET_CONFIG_EMULATION 1 #define FET_CONFIG_CLKCTRL 2 #define FET_CONFIG_MCLKCTRL 3 #define FET_CONFIG_FLASH_TESET 4 #define FET_CONFIG_FLASH_LOCK 5 #define FET_CONFIG_PROTOCOL 8 #define FET_RUN_FREE 1 #define FET_RUN_STEP 2 #define FET_RUN_BREAKPOINT 3 #define FET_RESET_PUC 0x01 #define FET_RESET_RST 0x02 #define FET_RESET_VCC 0x04 #define FET_RESET_ALL 0x07 #define FET_ERASE_SEGMENT 0 #define FET_ERASE_MAIN 1 #define FET_ERASE_ALL 2 #define FET_POLL_RUNNING 0x01 #define FET_POLL_BREAKPOINT 0x02 /********************************************************************* * Checksum calculation * * This code table is also derived from uif430. */ static const uint16_t fcstab[256] = { 0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf, 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7, 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e, 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876, 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd, 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5, 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c, 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974, 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb, 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3, 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a, 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72, 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9, 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1, 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738, 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70, 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7, 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff, 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036, 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e, 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5, 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd, 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134, 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c, 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3, 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb, 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232, 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a, 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1, 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9, 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330, 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78 }; static uint16_t calc_checksum(uint8_t *cp, int len) { uint16_t fcs = 0xffff; while (len--) { fcs = (fcs >> 8) ^ fcstab[(fcs ^ *cp++) & 0xff]; } return fcs ^ 0xffff; } /********************************************************************* * FET packet transfer. This level of the interface deals in packets * send to/from the device. */ /* This is a type of data transfer which appears to be unique to * the RF2500. Blocks of data are sent to an internal buffer. Each * block is prefixed with a buffer offset and a payload length. * * No checksums are included. */ static int send_rf2500_data(struct fet_device *dev, const uint8_t *data, int len) { int offset = 0; while (len) { uint8_t pbuf[63]; int plen = len > 59 ? 59 : len; pbuf[0] = 0x83; pbuf[1] = offset & 0xff; pbuf[2] = offset >> 8; pbuf[3] = plen; memcpy(pbuf + 4, data, plen); if (dev->transport->ops->send(dev->transport, pbuf, plen + 4) < 0) return -1; data += plen; len -= plen; offset += plen; } return 0; } #define PTYPE_ACK 0 #define PTYPE_CMD 1 #define PTYPE_PARAM 2 #define PTYPE_DATA 3 #define PTYPE_MIXED 4 #define PTYPE_NAK 5 #define PTYPE_FLASH_ACK 6 static int parse_packet(struct fet_device *dev, int plen) { uint16_t c = calc_checksum(dev->fet_buf + 2, plen - 2); uint16_t r = LE_WORD(dev->fet_buf, plen); int i = 2; int type; int error; if (c != r) { printc_err("fet: checksum error (calc %04x," " recv %04x)\n", c, r); return -1; } if (plen < 6) goto too_short; dev->fet_reply.command_code = dev->fet_buf[i++]; type = dev->fet_buf[i++]; dev->fet_reply.state = dev->fet_buf[i++]; error = dev->fet_buf[i++]; if (error) { printc_err("fet: FET returned error code %d (%s)\n", error, fet_error(error)); return -1; } if (type == PTYPE_NAK) { printc_err("fet: FET returned NAK\n"); return -1; } /* Parse packet parameters */ if (type == PTYPE_PARAM || type == PTYPE_MIXED) { int j; if (i + 2 > plen) goto too_short; dev->fet_reply.argc = LE_WORD(dev->fet_buf, i); i += 2; if (dev->fet_reply.argc >= MAX_PARAMS) { printc_err("fet: too many params: %d\n", dev->fet_reply.argc); return -1; } for (j = 0; j < dev->fet_reply.argc; j++) { if (i + 4 > plen) goto too_short; dev->fet_reply.argv[j] = LE_LONG(dev->fet_buf, i); i += 4; } } else { dev->fet_reply.argc = 0; } /* Extract a pointer to the data */ if (type == PTYPE_DATA || type == PTYPE_MIXED) { if (i + 4 > plen) goto too_short; dev->fet_reply.datalen = LE_LONG(dev->fet_buf, i); i += 4; if (i + dev->fet_reply.datalen > plen) goto too_short; dev->fet_reply.data = dev->fet_buf + i; } else { dev->fet_reply.data = NULL; dev->fet_reply.datalen = 0; } return 0; too_short: printc_err("fet: too short (%d bytes)\n", plen); return -1; } /* Receive a packet from the FET. The usual format is: * * * The length is that of the data + checksum. Olimex JTAG adapters follow * all packets with a trailing 0x7e byte, which must be discarded. */ static int recv_packet(struct fet_device *dev) { int pkt_extra = (dev->flags & FET_PROTO_EXTRA_RECV) ? 3 : 2; int plen = LE_WORD(dev->fet_buf, 0); /* If there's a packet still here from last time, get rid of it */ if (dev->fet_len >= plen + pkt_extra) { memmove(dev->fet_buf, dev->fet_buf + plen + pkt_extra, dev->fet_len - plen - pkt_extra); dev->fet_len -= plen + pkt_extra; } /* Keep adding data to the buffer until we have a complete packet */ for (;;) { int len; plen = LE_WORD(dev->fet_buf, 0); if (dev->fet_len >= plen + pkt_extra) return parse_packet(dev, plen); len = dev->transport->ops->recv(dev->transport, dev->fet_buf + dev->fet_len, sizeof(dev->fet_buf) - dev->fet_len); if (len < 0) return -1; dev->fet_len += len; } return -1; } static int send_command(struct fet_device *dev, int command_code, const uint32_t *params, int nparams, const uint8_t *extra, int exlen) { uint8_t datapkt[MAX_BLOCK_SIZE * 2]; int len = 0; uint8_t buf[MAX_BLOCK_SIZE * 3]; uint16_t cksum; int i = 0; int j; assert (len + exlen + 2 <= sizeof(datapkt)); /* Command code and packet type */ datapkt[len++] = command_code; datapkt[len++] = ((nparams > 0) ? 1 : 0) + ((exlen > 0) ? 2 : 0) + 1; /* Optional parameters */ if (nparams > 0) { datapkt[len++] = nparams & 0xff; datapkt[len++] = nparams >> 8; for (j = 0; j < nparams; j++) { uint32_t p = params[j]; datapkt[len++] = p & 0xff; p >>= 8; datapkt[len++] = p & 0xff; p >>= 8; datapkt[len++] = p & 0xff; p >>= 8; datapkt[len++] = p & 0xff; } } /* Extra data */ if (extra) { int x = exlen; datapkt[len++] = x & 0xff; x >>= 8; datapkt[len++] = x & 0xff; x >>= 8; datapkt[len++] = x & 0xff; x >>= 8; datapkt[len++] = x & 0xff; memcpy(datapkt + len, extra, exlen); len += exlen; } /* Checksum */ cksum = calc_checksum(datapkt, len); datapkt[len++] = cksum & 0xff; datapkt[len++] = cksum >> 8; /* Copy into buf, escaping special characters and adding * delimeters. */ if (!(dev->flags & FET_PROTO_NOLEAD_SEND)) buf[i++] = 0x7e; for (j = 0; j < len; j++) { char c = datapkt[j]; if (c == 0x7e || c == 0x7d) { buf[i++] = 0x7d; c ^= 0x20; } buf[i++] = c; } buf[i++] = 0x7e; assert (i < sizeof(buf)); return dev->transport->ops->send(dev->transport, buf, i); } static int xfer(struct fet_device *dev, int command_code, const uint8_t *data, int datalen, int nparams, ...) { uint32_t params[MAX_PARAMS]; int i; va_list ap; assert (nparams <= MAX_PARAMS); va_start(ap, nparams); for (i = 0; i < nparams; i++) params[i] = va_arg(ap, uint32_t); va_end(ap); if (data && (dev->flags & FET_PROTO_SEPARATE_DATA)) { assert (nparams + 1 <= MAX_PARAMS); params[nparams++] = datalen; if (send_rf2500_data(dev, data, datalen) < 0) return -1; if (send_command(dev, command_code, params, nparams, NULL, 0) < 0) return -1; } else if (send_command(dev, command_code, params, nparams, data, datalen) < 0) return -1; if (recv_packet(dev) < 0) return -1; if (dev->fet_reply.command_code != command_code) { printc_err("fet: reply type mismatch\n"); return -1; } return 0; } /********************************************************************** * MSP430 high-level control functions */ static void show_dev_info(const char *name, const struct fet_device *dev) { printc("Device: %s\n", name); printc_dbg("Number of breakpoints: %d\n", dev->base.max_breakpoints); } static int identify_old(struct fet_device *dev) { char idtext[64]; if (xfer(dev, C_IDENTIFY, NULL, 0, 2, 70, 0) < 0) return -1; if (dev->fet_reply.datalen < 0x26) { printc_err("fet: missing info\n"); return -1; } memcpy(idtext, dev->fet_reply.data + 4, 32); idtext[32] = 0; dev->base.max_breakpoints = LE_WORD(dev->fet_reply.data, 0x2a); show_dev_info(idtext, dev); return 0; } static int identify_new(struct fet_device *dev, const char *force_id) { const struct fet_db_record *r; if (xfer(dev, C_IDENT1, NULL, 0, 2, 0, 0) < 0) { printc_err("fet: command C_IDENT1 failed\n"); return -1; } if (dev->fet_reply.datalen < 2) { printc_err("fet: missing info\n"); return -1; } printc_dbg("Device ID: 0x%02x%02x\n", dev->fet_reply.data[0], dev->fet_reply.data[1]); if (force_id) r = fet_db_find_by_name(force_id); else r = fet_db_find_by_msg28(dev->fet_reply.data, dev->fet_reply.datalen); if (!r) { printc_err("fet: unknown device\n"); debug_hexdump("msg28_data:", dev->fet_reply.data, dev->fet_reply.datalen); return -1; } dev->base.max_breakpoints = r->msg29_data[0x14]; printc_dbg(" Code start address: 0x%x\n", LE_WORD(r->msg29_data, 0)); /* * The value at 0x02 seems to contain a "virtual code end * address". So this value seems to be useful only for * calculating the total ROM size. * * For example, as for the msp430f6736 with 128kb ROM, the ROM * is split into two areas: A "near" ROM, and a "far ROM". */ const uint32_t codeSize = LE_LONG(r->msg29_data, 0x02) - LE_WORD(r->msg29_data, 0) + 1; printc_dbg(" Code size : %u byte = %u kb\n", codeSize, codeSize / 1024); printc_dbg(" RAM start address: 0x%x\n", LE_WORD(r->msg29_data, 0x0c)); printc_dbg(" RAM end address: 0x%x\n", LE_WORD(r->msg29_data, 0x0e)); const uint16_t ramSize = LE_WORD(r->msg29_data, 0x0e) - LE_WORD(r->msg29_data, 0x0c) + 1; printc_dbg(" RAM size : %u byte = %u kb\n", ramSize, ramSize / 1024); show_dev_info(r->name, dev); if (xfer(dev, C_IDENT3, r->msg2b_data, r->msg2b_len, 0) < 0) printc_err("fet: warning: message C_IDENT3 failed\n"); if (xfer(dev, C_IDENT2, r->msg29_data, FET_DB_MSG29_LEN, 3, r->msg29_params[0], r->msg29_params[1], r->msg29_params[2]) < 0) { printc_err("fet: message C_IDENT2 failed\n"); return -1; } return 0; } static int do_identify(struct fet_device *dev, const char *force_id) { if (dev->flags & FET_PROTO_IDENTIFY_NEW) return identify_new(dev, force_id); if (dev->version < 20300000) return identify_old(dev); return identify_new(dev, force_id); } static int do_run(struct fet_device *dev, int type) { if (xfer(dev, C_RUN, NULL, 0, 2, type, 0) < 0) { printc_err("fet: failed to restart CPU\n"); return -1; } return 0; } static int fet_erase(device_t dev_base, device_erase_type_t type, address_t addr) { struct fet_device *dev = (struct fet_device *)dev_base; int fet_erase_type = FET_ERASE_MAIN; if (xfer(dev, C_CONFIGURE, NULL, 0, 2, FET_CONFIG_CLKCTRL, 0x26) < 0) { printc_err("fet: config (1) failed\n"); return -1; } if (xfer(dev, C_CONFIGURE, NULL, 0, 2, FET_CONFIG_FLASH_LOCK, 0) < 0) { printc_err("fet: config (2) failed\n"); return -1; } switch (type) { case DEVICE_ERASE_MAIN: fet_erase_type = FET_ERASE_MAIN; addr = 0xfffe; break; case DEVICE_ERASE_SEGMENT: fet_erase_type = FET_ERASE_SEGMENT; break; case DEVICE_ERASE_ALL: fet_erase_type = FET_ERASE_ALL; addr = 0xfffe; break; default: printc_err("fet: unsupported erase type\n"); return -1; } if (xfer(dev, C_ERASE, NULL, 0, 3, fet_erase_type, addr, 0) < 0) { printc_err("fet: erase command failed\n"); return -1; } return 0; } static device_status_t fet_poll(device_t dev_base) { struct fet_device *dev = (struct fet_device *)dev_base; ctrlc_reset(); if ((delay_ms(50) < 0) || ctrlc_check()) return DEVICE_STATUS_INTR; if (xfer(dev, C_STATE, NULL, 0, 1, 0) < 0) { printc_err("fet: polling failed\n"); return DEVICE_STATUS_ERROR; } if (!(dev->fet_reply.argv[0] & FET_POLL_RUNNING)) return DEVICE_STATUS_HALTED; return DEVICE_STATUS_RUNNING; } static int refresh_bps(struct fet_device *dev) { int i; int ret = 0; for (i = 0; i < dev->base.max_breakpoints; i++) { struct device_breakpoint *bp = &dev->base.breakpoints[i]; if ((bp->flags & DEVICE_BP_DIRTY) && bp->type == DEVICE_BPTYPE_BREAK) { uint16_t addr = bp->addr; if (!(bp->flags & DEVICE_BP_ENABLED)) addr = 0; if (xfer(dev, C_BREAKPOINT, NULL, 0, 2, i, addr) < 0) { printc_err("fet: failed to refresh " "breakpoint #%d\n", i); ret = -1; } else { bp->flags &= ~DEVICE_BP_DIRTY; } } } return ret; } static int fet_ctl(device_t dev_base, device_ctl_t action) { struct fet_device *dev = (struct fet_device *)dev_base; switch (action) { case DEVICE_CTL_RESET: if (xfer(dev, C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0) { printc_err("fet: reset failed\n"); return -1; } break; case DEVICE_CTL_RUN: if (refresh_bps(dev) < 0) printc_err("warning: fet: failed to refresh " "breakpoints\n"); return do_run(dev, FET_RUN_BREAKPOINT); case DEVICE_CTL_HALT: if (xfer(dev, C_STATE, NULL, 0, 1, 1) < 0) { printc_err("fet: failed to halt CPU\n"); return -1; } break; case DEVICE_CTL_STEP: if (do_run(dev, FET_RUN_STEP) < 0) return -1; for (;;) { device_status_t status = fet_poll(dev_base); if (status == DEVICE_STATUS_ERROR || status == DEVICE_STATUS_INTR) return -1; if (status == DEVICE_STATUS_HALTED) break; } break; } return 0; } static void fet_destroy(device_t dev_base) { struct fet_device *dev = (struct fet_device *)dev_base; /* The second argument to C_RESET is a boolean which specifies * whether the chip should run or not. The final argument is * also a boolean. Setting it non-zero is required to get the * RST pin working on the G2231, but it must be zero on the * FR5739, or else the value of the reset vector gets set to * 0xffff at the start of the next JTAG session. */ if (xfer(dev, C_RESET, NULL, 0, 3, FET_RESET_ALL, 1, !device_is_fram(dev_base)) < 0) printc_err("fet: final reset failed\n"); if (xfer(dev, C_CLOSE, NULL, 0, 1, 0) < 0) printc_err("fet: close command failed\n"); dev->transport->ops->destroy(dev->transport); free(dev); } static int read_byte(struct fet_device *dev, address_t addr, uint8_t *out) { address_t base = addr & ~1; if (xfer(dev, C_READMEMORY, NULL, 0, 2, base, 2) < 0) { printc_err("fet: failed to read byte from 0x%04x\n", addr); return -1; } *out = dev->fet_reply.data[addr & 1]; return 0; } static int write_byte(struct fet_device *dev, address_t addr, uint8_t value) { uint8_t buf[2]; address_t base = addr & ~1; if (xfer(dev, C_READMEMORY, NULL, 0, 2, base, 2) < 0) { printc_err("fet: failed to read byte from 0x%04x\n", addr); return -1; } buf[0] = dev->fet_reply.data[0]; buf[1] = dev->fet_reply.data[1]; buf[addr & 1] = value; if (xfer(dev, C_WRITEMEMORY, buf, 2, 1, base) < 0) { printc_err("fet: failed to write byte from 0x%04x\n", addr); return -1; } return 0; } static int get_adjusted_block_size(void) { int block_size = opdb_get_numeric("fet_block_size") & ~1; if (block_size < 2) block_size = 2; if (block_size > MAX_BLOCK_SIZE) block_size = MAX_BLOCK_SIZE; return block_size; } int fet_readmem(device_t dev_base, address_t addr, uint8_t *buffer, address_t count) { struct fet_device *dev = (struct fet_device *)dev_base; int block_size = get_adjusted_block_size(); if (addr & 1) { if (read_byte(dev, addr, buffer) < 0) return -1; addr++; buffer++; count--; } while (count > 1) { int plen = count > block_size ? block_size : count; plen &= ~0x1; if (xfer(dev, C_READMEMORY, NULL, 0, 2, addr, plen) < 0) { printc_err("fet: failed to read " "from 0x%04x\n", addr); return -1; } if (dev->fet_reply.datalen < plen) { printc_err("fet: short data: " "%d bytes\n", dev->fet_reply.datalen); return -1; } memcpy(buffer, dev->fet_reply.data, plen); buffer += plen; count -= plen; addr += plen; } if (count && read_byte(dev, addr, buffer) < 0) return -1; return 0; } int fet_writemem(device_t dev_base, address_t addr, const uint8_t *buffer, address_t count) { struct fet_device *dev = (struct fet_device *)dev_base; int block_size = get_adjusted_block_size(); if (addr & 1) { if (write_byte(dev, addr, *buffer) < 0) return -1; addr++; buffer++; count--; } while (count > 1) { int plen = count > block_size ? block_size : count; int ret; plen &= ~0x1; ret = xfer(dev, C_WRITEMEMORY, buffer, plen, 1, addr); if (ret < 0) { printc_err("fet: failed to write to 0x%04x\n", addr); return -1; } buffer += plen; count -= plen; addr += plen; } if (count && write_byte(dev, addr, *buffer) < 0) return -1; return 0; } static int fet_getregs(device_t dev_base, address_t *regs) { struct fet_device *dev = (struct fet_device *)dev_base; int i; if (xfer(dev, C_READREGISTERS, NULL, 0, 0) < 0) return -1; if (dev->fet_reply.datalen < DEVICE_NUM_REGS * 4) { printc_err("fet: short reply (%d bytes)\n", dev->fet_reply.datalen); return -1; } for (i = 0; i < DEVICE_NUM_REGS; i++) regs[i] = LE_LONG(dev->fet_reply.data, i * 4); return 0; } static int fet_setregs(device_t dev_base, const address_t *regs) { struct fet_device *dev = (struct fet_device *)dev_base; uint8_t buf[DEVICE_NUM_REGS * 4];; int i; int ret; memset(buf, 0, sizeof(buf)); for (i = 0; i < DEVICE_NUM_REGS; i++) { buf[i * 4] = regs[i] & 0xff; buf[i * 4 + 1] = (regs[i] >> 8) & 0xff; buf[i * 4 + 2] = (regs[i] >> 16) & 0xff; buf[i * 4 + 3] = regs[i] >> 24; } ret = xfer(dev, C_WRITEREGISTERS, buf, sizeof(buf), 1, 0xffff); if (ret < 0) { printc_err("fet: context set failed\n"); return -1; } return 0; } static int do_configure(struct fet_device *dev, const struct device_args *args) { if (!(args->flags & DEVICE_FLAG_JTAG)) { if (!xfer(dev, C_CONFIGURE, NULL, 0, 2, FET_CONFIG_PROTOCOL, 1)) { printc_dbg("Configured for Spy-Bi-Wire\n"); return 0; } printc_err("fet: Spy-Bi-Wire configuration failed\n"); return -1; } if (!xfer(dev, C_CONFIGURE, NULL, 0, 2, FET_CONFIG_PROTOCOL, 2)) { printc_dbg("Configured for JTAG (2)\n"); return 0; } printc_err("fet: warning: JTAG configuration failed -- " "retrying\n"); if (!xfer(dev, C_CONFIGURE, NULL, 0, 2, FET_CONFIG_PROTOCOL, 0)) { printc_dbg("Configured for JTAG (0)\n"); return 0; } printc_err("fet: JTAG configuration failed\n"); return -1; } int try_open(struct fet_device *dev, const struct device_args *args, int send_reset) { transport_t transport = dev->transport; if (dev->flags & FET_PROTO_NOLEAD_SEND) { printc("Resetting Olimex command processor...\n"); transport->ops->send(dev->transport, (const uint8_t *)"\x7e", 1); delay_ms(5); transport->ops->send(dev->transport, (const uint8_t *)"\x7e", 1); delay_ms(5); } printc_dbg("Initializing FET...\n"); if (xfer(dev, C_INITIALIZE, NULL, 0, 0) < 0) { printc_err("fet: open failed\n"); return -1; } dev->version = dev->fet_reply.argv[0]; printc_dbg("FET protocol version is %d\n", dev->version); if (xfer(dev, 0x27, NULL, 0, 1, 4) < 0) { printc_err("fet: init failed\n"); return -1; } if (do_configure(dev, args) < 0) return -1; if (send_reset || args->flags & DEVICE_FLAG_FORCE_RESET) { printc_dbg("Sending reset...\n"); if (xfer(dev, C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0) printc_err("warning: fet: reset failed\n"); } /* set VCC */ if (xfer(dev, C_VCC, NULL, 0, 1, args->vcc_mv) < 0) printc_err("warning: fet: set VCC failed\n"); else printc_dbg("Set Vcc: %d mV\n", args->vcc_mv); /* Identify the chip */ if (do_identify(dev, args->forced_chip_id) < 0) { printc_err("fet: identify failed\n"); return -1; } return 0; } static device_t fet_open(const struct device_args *args, int flags, transport_t transport, const struct device_class *type) { struct fet_device *dev = malloc(sizeof(*dev)); int i; if (!dev) { pr_error("fet: failed to allocate memory"); return NULL; } memset(dev, 0, sizeof(*dev)); dev->base.type = type; dev->transport = transport; dev->flags = flags; if (try_open(dev, args, flags & FET_PROTO_FORCE_RESET) < 0) { delay_ms(500); printc("Trying again...\n"); if (try_open(dev, args, 1) < 0) goto fail; } /* Make sure breakpoints get reset on the first run */ if (dev->base.max_breakpoints > DEVICE_MAX_BREAKPOINTS) dev->base.max_breakpoints = DEVICE_MAX_BREAKPOINTS; for (i = 0; i < dev->base.max_breakpoints; i++) dev->base.breakpoints[i].flags = DEVICE_BP_DIRTY; return (device_t)dev; fail: transport->ops->destroy(transport); free(dev); return NULL; } static device_t fet_open_rf2500(const struct device_args *args) { transport_t trans; if (args->flags & DEVICE_FLAG_TTY) { printc_err("This driver does not support TTY devices.\n"); return NULL; } trans = rf2500_open(args->path, args->requested_serial); if (!trans) return NULL; return fet_open(args, FET_PROTO_SEPARATE_DATA, trans, &device_rf2500); } const struct device_class device_rf2500 = { .name = "rf2500", .help = "eZ430-RF2500 devices. Only USB connection is supported.", .open = fet_open_rf2500, .destroy = fet_destroy, .readmem = fet_readmem, .writemem = fet_writemem, .erase = fet_erase, .getregs = fet_getregs, .setregs = fet_setregs, .ctl = fet_ctl, .poll = fet_poll }; static device_t fet_open_olimex(const struct device_args *args) { transport_t trans; uint32_t version; if (args->flags & DEVICE_FLAG_TTY) trans = uif_open(args->path, UIF_TYPE_OLIMEX); else trans = olimex_open(args->path, args->requested_serial); if (!trans) return NULL; if (args->require_fwupdate) { int r; if (obl_update(trans, args->require_fwupdate) < 0) { trans->ops->destroy(trans); return NULL; } r = obl_reset(trans); trans->ops->destroy(trans); printc("Resetting, please wait...\n"); delay_s(15); if (args->flags & DEVICE_FLAG_TTY) trans = uif_open(args->path, UIF_TYPE_OLIMEX); else trans = olimex_open(args->path, args->requested_serial); if (!trans) return NULL; } if (!obl_get_version(trans, &version)) printc_dbg("Olimex firmware version: %x\n", version); return fet_open(args, FET_PROTO_NOLEAD_SEND | FET_PROTO_EXTRA_RECV | FET_PROTO_IDENTIFY_NEW | FET_PROTO_FORCE_RESET, trans, &device_olimex); } const struct device_class device_olimex = { .name = "olimex", .help = "Olimex MSP-JTAG-TINY.", .open = fet_open_olimex, .destroy = fet_destroy, .readmem = fet_readmem, .writemem = fet_writemem, .erase = fet_erase, .getregs = fet_getregs, .setregs = fet_setregs, .ctl = fet_ctl, .poll = fet_poll }; static device_t fet_open_olimex_v1(const struct device_args *args) { transport_t trans; if (args->flags & DEVICE_FLAG_TTY) trans = uif_open(args->path, UIF_TYPE_OLIMEX_V1); else trans = olimex_open(args->path, args->requested_serial); if (!trans) return NULL; return fet_open(args, FET_PROTO_NOLEAD_SEND | FET_PROTO_EXTRA_RECV | FET_PROTO_IDENTIFY_NEW, trans, &device_olimex_v1); } const struct device_class device_olimex_v1 = { .name = "olimex-v1", .help = "Olimex MSP-JTAG-TINY (V1).", .open = fet_open_olimex_v1, .destroy = fet_destroy, .readmem = fet_readmem, .writemem = fet_writemem, .erase = fet_erase, .getregs = fet_getregs, .setregs = fet_setregs, .ctl = fet_ctl, .poll = fet_poll }; static device_t fet_open_olimex_iso(const struct device_args *args) { transport_t trans; if (args->flags & DEVICE_FLAG_TTY) trans = uif_open(args->path, UIF_TYPE_OLIMEX_ISO); else trans = olimex_iso_open(args->path, args->requested_serial); if (!trans) return NULL; return fet_open(args, FET_PROTO_NOLEAD_SEND | FET_PROTO_EXTRA_RECV | FET_PROTO_IDENTIFY_NEW, trans, &device_olimex_iso); } const struct device_class device_olimex_iso = { .name = "olimex-iso", .help = "Olimex MSP-JTAG-ISO.", .open = fet_open_olimex_iso, .destroy = fet_destroy, .readmem = fet_readmem, .writemem = fet_writemem, .erase = fet_erase, .getregs = fet_getregs, .setregs = fet_setregs, .ctl = fet_ctl, .poll = fet_poll }; static device_t fet_open_uif(const struct device_args *args) { transport_t trans; if (args->flags & DEVICE_FLAG_TTY) trans = uif_open(args->path, UIF_TYPE_FET); else trans = ti3410_open(args->path, args->requested_serial); if (!trans) return NULL; return fet_open(args, 0, trans, &device_uif); } const struct device_class device_uif = { .name = "uif", .help = "TI FET430UIF and compatible devices (e.g. eZ430).", .open = fet_open_uif, .destroy = fet_destroy, .readmem = fet_readmem, .writemem = fet_writemem, .erase = fet_erase, .getregs = fet_getregs, .setregs = fet_setregs, .ctl = fet_ctl, .poll = fet_poll };