/* MSPDebug - debugging tool for the eZ430 * Copyright (C) 2009-2012 Daniel Beer * Copyright (C) 2012 Stanimir Bonev * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * Various constants and tables come from uif430, written by Robert * Kavaler (kavaler@diva.com). This is available under the same license * as this program, from www.relavak.com. */ #include #include #include #include #include #include #include "util.h" #include "fet.h" #include "fet_core.h" #include "fet_error.h" #include "fet_proto.h" #include "fet_db.h" #include "output.h" #include "opdb.h" #include "fet_olimex_db.h" #include "devicelist.h" struct fet_device { struct device base; int version; int fet_flags; int poll_enable; struct fet_proto proto; }; /********************************************************************** * FET command codes. * * These come from uif430 by Robert Kavaler (kavaler@diva.com). * www.relavak.com */ #define C_INITIALIZE 0x01 #define C_CLOSE 0x02 #define C_IDENTIFY 0x03 #define C_DEVICE 0x04 #define C_CONFIGURE 0x05 #define C_VCC 0x06 #define C_RESET 0x07 #define C_READREGISTERS 0x08 #define C_WRITEREGISTERS 0x09 #define C_READREGISTER 0x0a #define C_WRITEREGISTER 0x0b #define C_ERASE 0x0c #define C_READMEMORY 0x0d #define C_WRITEMEMORY 0x0e #define C_FASTFLASHER 0x0f #define C_BREAKPOINT 0x10 #define C_RUN 0x11 #define C_STATE 0x12 #define C_SECURE 0x13 #define C_VERIFYMEMORY 0x14 #define C_FASTVERIFYMEMORY 0x15 #define C_ERASECHECK 0x16 #define C_EEMOPEN 0x17 #define C_EEMREADREGISTER 0x18 #define C_EEMREADREGISTERTEST 0x19 #define C_EEMWRITEREGISTER 0x1a #define C_EEMCLOSE 0x1b #define C_ERRORNUMBER 0x1c #define C_GETCURVCCT 0x1d #define C_GETEXTVOLTAGE 0x1e #define C_FETSELFTEST 0x1f #define C_FETSETSIGNALS 0x20 #define C_FETRESET 0x21 #define C_READI2C 0x22 #define C_WRITEI2C 0x23 #define C_ENTERBOOTLOADER 0x24 #define C_IDENT1 0x28 #define C_IDENT2 0x29 #define C_IDENT3 0x2b #define C_CMM_PARAM 0x36 #define C_CMM_CTRL 0x37 #define C_CMM_READ 0x38 /* Constants for parameters of various FET commands */ #define FET_CONFIG_VERIFICATION 0 #define FET_CONFIG_EMULATION 1 #define FET_CONFIG_CLKCTRL 2 #define FET_CONFIG_MCLKCTRL 3 #define FET_CONFIG_FLASH_TESET 4 #define FET_CONFIG_FLASH_LOCK 5 #define FET_CONFIG_PROTOCOL 8 #define FET_RUN_FREE 1 #define FET_RUN_STEP 2 #define FET_RUN_BREAKPOINT 3 #define FET_RESET_PUC 0x01 #define FET_RESET_RST 0x02 #define FET_RESET_VCC 0x04 #define FET_RESET_ALL 0x07 #define FET_ERASE_SEGMENT 0 #define FET_ERASE_MAIN 1 #define FET_ERASE_ALL 2 #define FET_POLL_RUNNING 0x01 #define FET_POLL_BREAKPOINT 0x02 /********************************************************************** * MSP430 high-level control functions */ static void show_dev_info(const char *name, const struct fet_device *dev) { printc("Device: %s\n", name); printc_dbg("Number of breakpoints: %d\n", dev->base.max_breakpoints); } static int identify_old(struct fet_device *dev) { char idtext[64]; if (fet_proto_xfer(&dev->proto, C_IDENTIFY, NULL, 0, 2, 70, 0) < 0) return -1; if (dev->proto.datalen < 0x26) { printc_err("fet: missing info\n"); return -1; } memcpy(idtext, dev->proto.data + 4, 32); idtext[32] = 0; dev->base.max_breakpoints = LE_WORD(dev->proto.data, 0x2a); show_dev_info(idtext, dev); return 0; } static int identify_new(struct fet_device *dev, const char *force_id) { const struct fet_db_record *r; if (fet_proto_xfer(&dev->proto, C_IDENT1, NULL, 0, 2, 0, 0) < 0) { printc_err("fet: command C_IDENT1 failed\n"); return -1; } if (dev->proto.datalen < 2) { printc_err("fet: missing info\n"); return -1; } printc_dbg("Device ID: 0x%02x%02x\n", dev->proto.data[0], dev->proto.data[1]); if (force_id) r = fet_db_find_by_name(force_id); else r = fet_db_find_by_msg28(dev->proto.data, dev->proto.datalen); if (!r) { printc_err("fet: unknown device\n"); debug_hexdump("msg28_data:", dev->proto.data, dev->proto.datalen); return -1; } dev->base.max_breakpoints = r->msg29_data[0x14]; printc_dbg(" Code start address: 0x%x\n", LE_WORD(r->msg29_data, 0)); /* * The value at 0x02 seems to contain a "virtual code end * address". So this value seems to be useful only for * calculating the total ROM size. * * For example, as for the msp430f6736 with 128kb ROM, the ROM * is split into two areas: A "near" ROM, and a "far ROM". */ const uint32_t codeSize = LE_LONG(r->msg29_data, 0x02) - LE_WORD(r->msg29_data, 0) + 1; printc_dbg(" Code size : %u byte = %u kb\n", codeSize, codeSize / 1024); printc_dbg(" RAM start address: 0x%x\n", LE_WORD(r->msg29_data, 0x0c)); printc_dbg(" RAM end address: 0x%x\n", LE_WORD(r->msg29_data, 0x0e)); const uint16_t ramSize = LE_WORD(r->msg29_data, 0x0e) - LE_WORD(r->msg29_data, 0x0c) + 1; printc_dbg(" RAM size : %u byte = %u kb\n", ramSize, ramSize / 1024); show_dev_info(r->name, dev); if (fet_proto_xfer(&dev->proto, C_IDENT3, r->msg2b_data, r->msg2b_len, 0) < 0) printc_err("fet: warning: message C_IDENT3 failed\n"); if (fet_proto_xfer(&dev->proto, C_IDENT2, r->msg29_data, FET_DB_MSG29_LEN, 3, r->msg29_params[0], r->msg29_params[1], r->msg29_params[2]) < 0) { printc_err("fet: message C_IDENT2 failed\n"); return -1; } return 0; } static int identify_olimex(struct fet_device *dev, const char *force_id) { const struct fet_olimex_db_record *r; int db_indx; devicetype_t set_id = DT_UNKNOWN_DEVICE; devicetype_t dev_id = DT_UNKNOWN_DEVICE; uint8_t jtag_id; printc_dbg("Using Olimex identification procedure\n"); if (force_id) { db_indx = fet_olimex_db_find_by_name(force_id); if (db_indx < 0) { printc_err("fet: no such device: %s\n", force_id); return -1; } dev_id = set_id = fet_olimex_db_index_to_type(db_indx); } /* first try */ if (fet_proto_xfer(&dev->proto, C_IDENT1, NULL, 0, 3, set_id, set_id, 0) < 0 && (4 != dev->proto.error)) /* No device error */ { printc_err("fet: command C_IDENT1 failed\n"); return -1; } if (dev->proto.datalen < 19) { printc_err("fet: missing info\n"); return -1; } jtag_id = dev->proto.data[18]; /* find device in data base */ if (DT_UNKNOWN_DEVICE == dev_id) { db_indx = fet_olimex_db_identify(dev->proto.data); dev_id = fet_olimex_db_index_to_type(db_indx); } if ((DT_UNKNOWN_DEVICE == dev_id && 0x91 == jtag_id) || (4 == dev->proto.error)) { /* second try with magic pattern */ if (fet_proto_xfer(&dev->proto, C_IDENT1, NULL, 0, 3, set_id, dev_id, 0) < 0) { printc_err("fet: command C_IDENT1 with " "magic patern failed\n"); return -1; } db_indx = fet_olimex_db_identify(dev->proto.data); dev_id = fet_olimex_db_index_to_type(db_indx); } printc_dbg("Device ID: 0x%02x%02x\n", dev->proto.data[0], dev->proto.data[1]); if (DT_UNKNOWN_DEVICE == dev_id) { printc_err("fet: can't find device in DB\n"); return -1; } r = fet_db_get_record(dev_id); dev->base.max_breakpoints = r->msg29_data[0x14]; printc_dbg(" Code start address: 0x%x\n", LE_WORD(r->msg29_data, 0)); /* * The value at 0x02 seems to contain a "virtual code end * address". So this value seems to be useful only for * calculating the total ROM size. * * For example, as for the msp430f6736 with 128kb ROM, the ROM * is split into two areas: A "near" ROM, and a "far ROM". */ const uint32_t codeSize = LE_LONG(r->msg29_data, 0x02) - LE_WORD(r->msg29_data, 0) + 1; printc_dbg(" Code size : %u byte = %u kb\n", codeSize, codeSize / 1024); printc_dbg(" RAM start address: 0x%x\n", LE_WORD(r->msg29_data, 0x0c)); printc_dbg(" RAM end address: 0x%x\n", LE_WORD(r->msg29_data, 0x0e)); const uint16_t ramSize = LE_WORD(r->msg29_data, 0x0e) - LE_WORD(r->msg29_data, 0x0c) + 1; printc_dbg(" RAM size : %u byte = %u kb\n", ramSize, ramSize / 1024); show_dev_info(r->name, dev); if (fet_proto_xfer(&dev->proto, C_IDENT3, r->msg2b_data, r->msg2b_len, 0) < 0) printc_err("fet: warning: message C_IDENT3 failed\n"); if (fet_proto_xfer(&dev->proto, C_IDENT2, r->msg29_data, FET_DB_MSG29_LEN, 3, r->msg29_params[0], r->msg29_params[1], r->msg29_params[2]) < 0) { printc_err("fet: message C_IDENT2 failed\n"); return -1; } return 0; } static int is_new_olimex(const struct fet_device *dev) { if ((&device_olimex_iso_mk2 == dev->base.type) && (20000004 <= dev->version)) return 1; if (((&device_olimex == dev->base.type) || (&device_olimex_v1 == dev->base.type) || (&device_olimex_iso == dev->base.type)) && (10004003 <= dev->version)) return 1; return 0; } static int do_identify(struct fet_device *dev, const char *force_id) { if (is_new_olimex(dev)) return identify_olimex(dev, force_id); if (dev->fet_flags & FET_IDENTIFY_NEW) return identify_new(dev, force_id); if (dev->version < 20300000) return identify_old(dev); return identify_new(dev, force_id); } static void power_init(struct fet_device *dev) { if (fet_proto_xfer(&dev->proto, C_CMM_PARAM, NULL, 0, 0) < 0) { printc_err("warning: device does not support power " "profiling\n"); return; } if (dev->proto.argv[0] <= 0 || dev->proto.argv[0] <= 0) { printc_err("Bad parameters returned by C_CMM_PARAM: " "bufsize = %d bytes, %d us/sample\n", dev->proto.argv[1], dev->proto.argv[0]); return; } printc("Power profiling enabled: bufsize = %d bytes, %d us/sample\n", dev->proto.argv[1], dev->proto.argv[0]); dev->base.power_buf = powerbuf_new(POWERBUF_DEFAULT_SAMPLES, dev->proto.argv[0]); if (!dev->base.power_buf) { printc_err("Failed to allocate memory for power profile\n"); return; } } static int power_start(struct fet_device *dev) { if (!dev->base.power_buf) return 0; if (fet_proto_xfer(&dev->proto, C_CMM_CTRL, NULL, 0, 1, 1) < 0) { printc_err("fet: failed to start power profiling, " "disabling\n"); powerbuf_free(dev->base.power_buf); dev->base.power_buf = NULL; return -1; } powerbuf_begin_session(dev->base.power_buf, time(NULL)); dev->poll_enable = 1; return 0; } static int power_end(struct fet_device *dev) { if (!dev->base.power_buf) return 0; powerbuf_end_session(dev->base.power_buf); dev->poll_enable = 0; if (fet_proto_xfer(&dev->proto, C_CMM_CTRL, NULL, 0, 1, 1) < 0) { printc_err("fet: failed to end power profiling\n"); return -1; } return 0; } static int power_poll(struct fet_device *dev) { address_t mab; address_t mab_samples[1024]; unsigned int cur_samples[1024]; unsigned int count = 0; int i; if (!dev->base.power_buf || !dev->poll_enable) return 0; if (fet_proto_xfer(&dev->proto, C_CMM_READ, NULL, 0, 0) < 0) { printc_err("fet: failed to fetch power data, disabling\n"); power_end(dev); powerbuf_free(dev->base.power_buf); dev->base.power_buf = NULL; dev->poll_enable = 0; return -1; } mab = powerbuf_last_mab(dev->base.power_buf); for (i = 0; i + 3 < dev->proto.datalen; i += 4) { uint32_t s = LE_LONG(dev->proto.data, i); if (s & 0x80000000) { mab = s & 0x7fffffff; } else if (count + 1 < ARRAY_LEN(cur_samples)) { cur_samples[count] = s; mab_samples[count] = mab; count++; } } powerbuf_add_samples(dev->base.power_buf, count, cur_samples, mab_samples); return 0; } static int do_run(struct fet_device *dev, int type) { if (fet_proto_xfer(&dev->proto, C_RUN, NULL, 0, 2, type, 0) < 0) { printc_err("fet: failed to restart CPU\n"); return -1; } return 0; } int fet_erase(device_t dev_base, device_erase_type_t type, address_t addr) { struct fet_device *dev = (struct fet_device *)dev_base; int fet_erase_type = FET_ERASE_MAIN; if (fet_proto_xfer(&dev->proto, C_CONFIGURE, NULL, 0, 2, FET_CONFIG_CLKCTRL, 0x26) < 0) { printc_err("fet: config (1) failed\n"); return -1; } if (fet_proto_xfer(&dev->proto, C_CONFIGURE, NULL, 0, 2, FET_CONFIG_FLASH_LOCK, 0) < 0) { printc_err("fet: config (2) failed\n"); return -1; } switch (type) { case DEVICE_ERASE_MAIN: fet_erase_type = FET_ERASE_MAIN; addr = 0xfffe; break; case DEVICE_ERASE_SEGMENT: fet_erase_type = FET_ERASE_SEGMENT; break; case DEVICE_ERASE_ALL: fet_erase_type = FET_ERASE_ALL; addr = 0xfffe; break; default: printc_err("fet: unsupported erase type\n"); return -1; } if (fet_proto_xfer(&dev->proto, C_ERASE, NULL, 0, 3, fet_erase_type, addr, 0) < 0) { printc_err("fet: erase command failed\n"); return -1; } return 0; } device_status_t fet_poll(device_t dev_base) { struct fet_device *dev = (struct fet_device *)dev_base; ctrlc_reset(); if (fet_proto_xfer(&dev->proto, C_STATE, NULL, 0, 1, 0) < 0) { printc_err("fet: polling failed\n"); power_end(dev); return DEVICE_STATUS_ERROR; } if (dev->base.power_buf) power_poll(dev); else delay_ms(50); if (!(dev->proto.argv[0] & FET_POLL_RUNNING)) { power_end(dev); return DEVICE_STATUS_HALTED; } if (ctrlc_check()) return DEVICE_STATUS_INTR; return DEVICE_STATUS_RUNNING; } static int refresh_bps(struct fet_device *dev) { int i; int ret = 0; for (i = 0; i < dev->base.max_breakpoints; i++) { struct device_breakpoint *bp = &dev->base.breakpoints[i]; if ((bp->flags & DEVICE_BP_DIRTY) && bp->type == DEVICE_BPTYPE_BREAK) { uint16_t addr = bp->addr; if (!(bp->flags & DEVICE_BP_ENABLED)) addr = 0; if (fet_proto_xfer(&dev->proto, C_BREAKPOINT, NULL, 0, 2, i, addr) < 0) { printc_err("fet: failed to refresh " "breakpoint #%d\n", i); ret = -1; } else { bp->flags &= ~DEVICE_BP_DIRTY; } } } return ret; } int fet_ctl(device_t dev_base, device_ctl_t action) { struct fet_device *dev = (struct fet_device *)dev_base; switch (action) { case DEVICE_CTL_RESET: if (fet_proto_xfer(&dev->proto, C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0) { printc_err("fet: reset failed\n"); return -1; } break; case DEVICE_CTL_RUN: if (refresh_bps(dev) < 0) printc_err("warning: fet: failed to refresh " "breakpoints\n"); power_start(dev); if (do_run(dev, FET_RUN_BREAKPOINT) < 0) { power_end(dev); return -1; } return 0; case DEVICE_CTL_HALT: power_end(dev); if (fet_proto_xfer(&dev->proto, C_STATE, NULL, 0, 1, 1) < 0) { printc_err("fet: failed to halt CPU\n"); return -1; } break; case DEVICE_CTL_STEP: if (do_run(dev, FET_RUN_STEP) < 0) return -1; for (;;) { device_status_t status = fet_poll(dev_base); if (status == DEVICE_STATUS_ERROR || status == DEVICE_STATUS_INTR) return -1; if (status == DEVICE_STATUS_HALTED) break; } break; } return 0; } void fet_destroy(device_t dev_base) { struct fet_device *dev = (struct fet_device *)dev_base; /* The second argument to C_RESET is a boolean which specifies * whether the chip should run or not. The final argument is * also a boolean. Setting it non-zero is required to get the * RST pin working on the G2231, but it must be zero on the * FR5739, or else the value of the reset vector gets set to * 0xffff at the start of the next JTAG session. */ if (fet_proto_xfer(&dev->proto, C_RESET, NULL, 0, 3, FET_RESET_ALL, 1, !device_is_fram(dev_base)) < 0) printc_err("fet: final reset failed\n"); if (fet_proto_xfer(&dev->proto, C_CLOSE, NULL, 0, 1, 0) < 0) printc_err("fet: close command failed\n"); if (dev->base.power_buf) powerbuf_free(dev->base.power_buf); dev->proto.transport->ops->destroy(dev->proto.transport); free(dev); } static int read_byte(struct fet_device *dev, address_t addr, uint8_t *out) { address_t base = addr & ~1; if (fet_proto_xfer(&dev->proto, C_READMEMORY, NULL, 0, 2, base, 2) < 0) { printc_err("fet: failed to read byte from 0x%04x\n", addr); return -1; } *out = dev->proto.data[addr & 1]; return 0; } static int write_byte(struct fet_device *dev, address_t addr, uint8_t value) { uint8_t buf[2]; address_t base = addr & ~1; if (fet_proto_xfer(&dev->proto, C_READMEMORY, NULL, 0, 2, base, 2) < 0) { printc_err("fet: failed to read byte from 0x%04x\n", addr); return -1; } buf[0] = dev->proto.data[0]; buf[1] = dev->proto.data[1]; buf[addr & 1] = value; if (fet_proto_xfer(&dev->proto, C_WRITEMEMORY, buf, 2, 1, base) < 0) { printc_err("fet: failed to write byte from 0x%04x\n", addr); return -1; } return 0; } static int get_adjusted_block_size(void) { int block_size = opdb_get_numeric("fet_block_size") & ~1; if (block_size < 2) block_size = 2; if (block_size > FET_PROTO_MAX_BLOCK) block_size = FET_PROTO_MAX_BLOCK; return block_size; } int fet_readmem(device_t dev_base, address_t addr, uint8_t *buffer, address_t count) { struct fet_device *dev = (struct fet_device *)dev_base; int block_size = get_adjusted_block_size(); if (addr & 1) { if (read_byte(dev, addr, buffer) < 0) return -1; addr++; buffer++; count--; } while (count > 1) { int plen = count > block_size ? block_size : count; plen &= ~0x1; if (fet_proto_xfer(&dev->proto, C_READMEMORY, NULL, 0, 2, addr, plen) < 0) { printc_err("fet: failed to read " "from 0x%04x\n", addr); return -1; } if (dev->proto.datalen < plen) { printc_err("fet: short data: " "%d bytes\n", dev->proto.datalen); return -1; } memcpy(buffer, dev->proto.data, plen); buffer += plen; count -= plen; addr += plen; } if (count && read_byte(dev, addr, buffer) < 0) return -1; return 0; } int fet_writemem(device_t dev_base, address_t addr, const uint8_t *buffer, address_t count) { struct fet_device *dev = (struct fet_device *)dev_base; int block_size = get_adjusted_block_size(); if (addr & 1) { if (write_byte(dev, addr, *buffer) < 0) return -1; addr++; buffer++; count--; } while (count > 1) { int plen = count > block_size ? block_size : count; int ret; plen &= ~0x1; ret = fet_proto_xfer(&dev->proto, C_WRITEMEMORY, buffer, plen, 1, addr); if (ret < 0) { printc_err("fet: failed to write to 0x%04x\n", addr); return -1; } buffer += plen; count -= plen; addr += plen; } if (count && write_byte(dev, addr, *buffer) < 0) return -1; return 0; } int fet_getregs(device_t dev_base, address_t *regs) { struct fet_device *dev = (struct fet_device *)dev_base; int i; if (fet_proto_xfer(&dev->proto, C_READREGISTERS, NULL, 0, 0) < 0) return -1; if (dev->proto.datalen < DEVICE_NUM_REGS * 4) { printc_err("fet: short reply (%d bytes)\n", dev->proto.datalen); return -1; } for (i = 0; i < DEVICE_NUM_REGS; i++) regs[i] = LE_LONG(dev->proto.data, i * 4); return 0; } int fet_setregs(device_t dev_base, const address_t *regs) { struct fet_device *dev = (struct fet_device *)dev_base; uint8_t buf[DEVICE_NUM_REGS * 4];; int i; int ret; memset(buf, 0, sizeof(buf)); for (i = 0; i < DEVICE_NUM_REGS; i++) { buf[i * 4] = regs[i] & 0xff; buf[i * 4 + 1] = (regs[i] >> 8) & 0xff; buf[i * 4 + 2] = (regs[i] >> 16) & 0xff; buf[i * 4 + 3] = regs[i] >> 24; } ret = fet_proto_xfer(&dev->proto, C_WRITEREGISTERS, buf, sizeof(buf), 1, 0xffff); if (ret < 0) { printc_err("fet: context set failed\n"); return -1; } return 0; } static int do_configure(struct fet_device *dev, const struct device_args *args) { if (!(args->flags & DEVICE_FLAG_JTAG)) { if (!fet_proto_xfer(&dev->proto, C_CONFIGURE, NULL, 0, 2, FET_CONFIG_PROTOCOL, 1)) { printc_dbg("Configured for Spy-Bi-Wire\n"); return 0; } printc_err("fet: Spy-Bi-Wire configuration failed\n"); return -1; } if (!fet_proto_xfer(&dev->proto, C_CONFIGURE, NULL, 0, 2, FET_CONFIG_PROTOCOL, 2)) { printc_dbg("Configured for JTAG (2)\n"); return 0; } printc_err("fet: warning: JTAG configuration failed -- " "retrying\n"); if (!fet_proto_xfer(&dev->proto, C_CONFIGURE, NULL, 0, 2, FET_CONFIG_PROTOCOL, 0)) { printc_dbg("Configured for JTAG (0)\n"); return 0; } printc_err("fet: JTAG configuration failed\n"); return -1; } int try_open(struct fet_device *dev, const struct device_args *args, int send_reset) { transport_t transport = dev->proto.transport; if (dev->proto.proto_flags & FET_PROTO_NOLEAD_SEND) { printc("Resetting Olimex command processor...\n"); transport->ops->send(transport, (const uint8_t *)"\x7e", 1); delay_ms(5); transport->ops->send(transport, (const uint8_t *)"\x7e", 1); delay_ms(5); } printc_dbg("Initializing FET...\n"); if (fet_proto_xfer(&dev->proto, C_INITIALIZE, NULL, 0, 0) < 0) { printc_err("fet: open failed\n"); return -1; } dev->version = dev->proto.argv[0]; printc_dbg("FET protocol version is %d\n", dev->version); if (fet_proto_xfer(&dev->proto, 0x27, NULL, 0, 1, 4) < 0) { printc_err("fet: init failed\n"); return -1; } /* set VCC */ if (fet_proto_xfer(&dev->proto, C_VCC, NULL, 0, 1, args->vcc_mv) < 0) printc_err("warning: fet: set VCC failed\n"); else printc_dbg("Set Vcc: %d mV\n", args->vcc_mv); if (do_configure(dev, args) < 0) return -1; if (send_reset || args->flags & DEVICE_FLAG_FORCE_RESET) { printc_dbg("Sending reset...\n"); if (fet_proto_xfer(&dev->proto, C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0) printc_err("warning: fet: reset failed\n"); } /* Identify the chip */ if (do_identify(dev, args->forced_chip_id) < 0) { printc_err("fet: identify failed\n"); return -1; } return 0; } device_t fet_open(const struct device_args *args, int proto_flags, transport_t transport, int fet_flags, const struct device_class *type) { struct fet_device *dev = malloc(sizeof(*dev)); int i; if (!dev) { pr_error("fet: failed to allocate memory"); return NULL; } memset(dev, 0, sizeof(*dev)); fet_proto_init(&dev->proto, transport, proto_flags); dev->base.type = type; dev->fet_flags = fet_flags; if (try_open(dev, args, fet_flags & FET_FORCE_RESET) < 0) { delay_ms(500); printc("Trying again...\n"); if (try_open(dev, args, !is_new_olimex(dev)) < 0) goto fail; } /* Make sure breakpoints get reset on the first run */ if (dev->base.max_breakpoints > DEVICE_MAX_BREAKPOINTS) dev->base.max_breakpoints = DEVICE_MAX_BREAKPOINTS; for (i = 0; i < dev->base.max_breakpoints; i++) dev->base.breakpoints[i].flags = DEVICE_BP_DIRTY; /* Initialize power profiling */ power_init(dev); return (device_t)dev; fail: transport->ops->destroy(transport); free(dev); return NULL; }