jiti-meet/react/features/face-landmarks/FaceLandmarksHelper.ts

246 lines
7.8 KiB
TypeScript
Raw Normal View History

import { setWasmPaths } from '@tensorflow/tfjs-backend-wasm';
import { Human, Config, FaceResult } from '@vladmandic/human';
import { DETECTION_TYPES, FACE_DETECTION_SCORE_THRESHOLD, FACE_EXPRESSIONS_NAMING_MAPPING } from './constants';
import { DetectInput, DetectOutput, FaceBox, InitInput } from './types';
export interface FaceLandmarksHelper {
detect: ({ image, threshold }: DetectInput) => Promise<DetectOutput>;
getDetectionInProgress: () => boolean;
getDetections: (image: ImageBitmap | ImageData) => Promise<Array<FaceResult>>;
getFaceBox: (detections: Array<FaceResult>, threshold: number) => FaceBox | undefined;
getFaceCount: (detections: Array<FaceResult>) => number;
getFaceExpression: (detections: Array<FaceResult>) => string | undefined;
init: () => Promise<void>;
}
/**
* Helper class for human library.
*/
export class HumanHelper implements FaceLandmarksHelper {
protected human: Human | undefined;
protected faceDetectionTypes: string[];
protected baseUrl: string;
private detectionInProgress = false;
private lastValidFaceBox: FaceBox | undefined;
/**
* Configuration for human.
*/
private config: Partial<Config> = {
backend: 'humangl',
async: true,
warmup: 'none',
cacheModels: true,
cacheSensitivity: 0,
debug: false,
deallocate: true,
filter: { enabled: false },
face: {
enabled: false,
detector: {
enabled: false,
rotation: false,
modelPath: 'blazeface-front.json',
maxDetected: 20
},
mesh: { enabled: false },
iris: { enabled: false },
emotion: {
enabled: false,
modelPath: 'emotion.json'
},
description: { enabled: false }
},
hand: { enabled: false },
gesture: { enabled: false },
body: { enabled: false },
segmentation: { enabled: false }
};
/**
* Constructor function for the helper which initialize the helper.
*
* @param {InitInput} input - The input for the helper.
* @returns {void}
*/
constructor({ baseUrl, detectionTypes }: InitInput) {
this.faceDetectionTypes = detectionTypes;
this.baseUrl = baseUrl;
this.init();
}
/**
* Initializes the human helper with the available tfjs backend for the given detection types.
*
* @returns {Promise<void>}
*/
async init(): Promise<void> {
if (!this.human) {
this.config.modelBasePath = this.baseUrl;
if (!self.OffscreenCanvas) {
this.config.backend = 'wasm';
this.config.wasmPath = this.baseUrl;
setWasmPaths(this.baseUrl);
}
if (this.faceDetectionTypes.length > 0 && this.config.face) {
this.config.face.enabled = true;
}
if (this.faceDetectionTypes.includes(DETECTION_TYPES.FACE_BOX) && this.config.face?.detector) {
this.config.face.detector.enabled = true;
}
if (this.faceDetectionTypes.includes(DETECTION_TYPES.FACE_EXPRESSIONS) && this.config.face?.emotion) {
this.config.face.emotion.enabled = true;
}
const initialHuman = new Human(this.config);
try {
await initialHuman.load();
} catch (err) {
console.error(err);
}
this.human = initialHuman;
}
}
/**
* Gets the face box from the detections, if there is no valid detections it will return undefined..
*
* @param {Array<FaceResult>} detections - The array with the detections.
* @param {number} threshold - Face box position change threshold.
* @returns {FaceBox | undefined}
*/
getFaceBox(detections: Array<FaceResult>, threshold: number): FaceBox | undefined {
if (this.getFaceCount(detections) !== 1) {
return;
}
const faceBox: FaceBox = {
// normalize to percentage based
left: Math.round(detections[0].boxRaw[0] * 100),
right: Math.round((detections[0].boxRaw[0] + detections[0].boxRaw[2]) * 100)
};
faceBox.width = Math.round(faceBox.right - faceBox.left);
if (this.lastValidFaceBox && threshold && Math.abs(this.lastValidFaceBox.left - faceBox.left) < threshold) {
return;
}
this.lastValidFaceBox = faceBox;
return faceBox;
}
/**
* Gets the face expression from the detections, if there is no valid detections it will return undefined.
*
* @param {Array<FaceResult>} detections - The array with the detections.
* @returns {string | undefined}
*/
getFaceExpression(detections: Array<FaceResult>): string | undefined {
if (this.getFaceCount(detections) !== 1) {
return;
}
if (detections[0].emotion) {
return FACE_EXPRESSIONS_NAMING_MAPPING[detections[0].emotion[0].emotion];
}
}
/**
* Gets the face count from the detections, which is the number of detections.
*
* @param {Array<FaceResult>} detections - The array with the detections.
* @returns {number}
*/
getFaceCount(detections: Array<FaceResult> | undefined): number {
if (detections) {
return detections.length;
}
return 0;
}
/**
* Gets the detections from the image captured from the track.
*
* @param {ImageBitmap | ImageData} image - The image captured from the track,
* if OffscreenCanvas available it will be ImageBitmap, otherwise it will be ImageData.
* @returns {Promise<Array<FaceResult>>}
*/
async getDetections(image: ImageBitmap | ImageData): Promise<Array<FaceResult>> {
if (!this.human || !this.faceDetectionTypes.length) {
return [];
}
this.human.tf.engine().startScope();
const imageTensor = this.human.tf.browser.fromPixels(image);
const { face: detections } = await this.human.detect(imageTensor, this.config);
this.human.tf.engine().endScope();
return detections.filter(detection => detection.score > FACE_DETECTION_SCORE_THRESHOLD);
}
/**
* Gathers together all the data from the detections, it's the function that will be called in the worker.
*
* @param {DetectInput} input - The input for the detections.
* @returns {Promise<DetectOutput>}
*/
public async detect({ image, threshold }: DetectInput): Promise<DetectOutput> {
let faceExpression;
let faceBox;
this.detectionInProgress = true;
const detections = await this.getDetections(image);
if (this.faceDetectionTypes.includes(DETECTION_TYPES.FACE_EXPRESSIONS)) {
faceExpression = this.getFaceExpression(detections);
}
if (this.faceDetectionTypes.includes(DETECTION_TYPES.FACE_BOX)) {
// if more than one face is detected the face centering will be disabled.
if (this.getFaceCount(detections) > 1) {
this.faceDetectionTypes.splice(this.faceDetectionTypes.indexOf(DETECTION_TYPES.FACE_BOX), 1);
// face-box for re-centering
faceBox = {
left: 0,
right: 100,
width: 100
};
} else {
faceBox = this.getFaceBox(detections, threshold);
}
}
this.detectionInProgress = false;
return {
faceExpression,
faceBox,
faceCount: this.getFaceCount(detections)
};
}
/**
* Returns the detection state.
*
* @returns {boolean}
*/
public getDetectionInProgress(): boolean {
return this.detectionInProgress;
}
}