2021-11-17 14:33:03 +00:00
|
|
|
// @flow
|
|
|
|
import './faceApiPatch';
|
|
|
|
import * as faceapi from 'face-api.js';
|
|
|
|
|
|
|
|
/**
|
|
|
|
* A flag that indicates whether the tensorflow models were loaded or not.
|
|
|
|
*/
|
|
|
|
let modelsLoaded = false;
|
|
|
|
|
2021-12-08 07:27:17 +00:00
|
|
|
/**
|
|
|
|
* The url where the models for the facial detection of expressions are located.
|
|
|
|
*/
|
|
|
|
let modelsURL;
|
|
|
|
|
2021-11-17 14:33:03 +00:00
|
|
|
/**
|
|
|
|
* A flag that indicates whether the tensorflow backend is set or not.
|
|
|
|
*/
|
|
|
|
let backendSet = false;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* A timer variable for set interval.
|
|
|
|
*/
|
|
|
|
let timer;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The duration of the set timeout.
|
|
|
|
*/
|
|
|
|
let timeoutDuration = -1;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Time used for detection interval when facial expressions worker uses webgl backend.
|
|
|
|
*/
|
|
|
|
const WEBGL_TIME_INTERVAL = 1000;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Time used for detection interval when facial expression worker uses cpu backend.
|
|
|
|
*/
|
|
|
|
const CPU_TIME_INTERVAL = 6000;
|
|
|
|
|
|
|
|
// eslint-disable-next-line no-unused-vars
|
|
|
|
const window = {
|
|
|
|
screen: {
|
|
|
|
width: 1280,
|
|
|
|
height: 720
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
onmessage = async function(message) {
|
2021-12-08 07:27:17 +00:00
|
|
|
if (message.data.id === 'SET_MODELS_URL') {
|
|
|
|
modelsURL = message.data.url;
|
|
|
|
}
|
|
|
|
|
2021-11-17 14:33:03 +00:00
|
|
|
// Receives image data
|
|
|
|
if (message.data.id === 'SET_TIMEOUT') {
|
2021-12-08 07:27:17 +00:00
|
|
|
if (!message.data.imageData || !modelsURL) {
|
|
|
|
self.postMessage({
|
|
|
|
type: 'facial-expression',
|
|
|
|
value: null
|
|
|
|
});
|
2021-11-17 14:33:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// the models are loaded
|
|
|
|
if (!modelsLoaded) {
|
2021-12-08 07:27:17 +00:00
|
|
|
await faceapi.loadTinyFaceDetectorModel(modelsURL);
|
|
|
|
await faceapi.loadFaceExpressionModel(modelsURL);
|
2021-11-17 14:33:03 +00:00
|
|
|
modelsLoaded = true;
|
|
|
|
}
|
|
|
|
faceapi.tf.engine().startScope();
|
|
|
|
const tensor = faceapi.tf.browser.fromPixels(message.data.imageData);
|
|
|
|
const detections = await faceapi.detectSingleFace(
|
|
|
|
tensor,
|
|
|
|
new faceapi.TinyFaceDetectorOptions()
|
|
|
|
).withFaceExpressions();
|
|
|
|
|
|
|
|
// The backend is set
|
|
|
|
if (!backendSet) {
|
|
|
|
const backend = faceapi.tf.getBackend();
|
|
|
|
|
|
|
|
if (backend !== undefined) {
|
|
|
|
if (backend === 'webgl') {
|
|
|
|
timeoutDuration = WEBGL_TIME_INTERVAL;
|
|
|
|
} else if (backend === 'cpu') {
|
|
|
|
timeoutDuration = CPU_TIME_INTERVAL;
|
|
|
|
}
|
|
|
|
self.postMessage({
|
|
|
|
type: 'tf-backend',
|
|
|
|
value: backend
|
|
|
|
});
|
|
|
|
backendSet = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
faceapi.tf.engine().endScope();
|
|
|
|
let facialExpression;
|
|
|
|
|
|
|
|
if (detections) {
|
|
|
|
facialExpression = detections.expressions.asSortedArray()[0].expression;
|
|
|
|
}
|
2021-12-08 07:27:17 +00:00
|
|
|
timer = setTimeout(() => {
|
2021-11-17 14:33:03 +00:00
|
|
|
self.postMessage({
|
|
|
|
type: 'facial-expression',
|
|
|
|
value: facialExpression
|
|
|
|
});
|
2021-12-08 07:27:17 +00:00
|
|
|
}, timeoutDuration);
|
2021-11-17 14:33:03 +00:00
|
|
|
} else if (message.data.id === 'CLEAR_TIMEOUT') {
|
|
|
|
// Clear the timeout.
|
|
|
|
if (timer) {
|
|
|
|
clearTimeout(timer);
|
|
|
|
timer = null;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|