feat(face-landmarks) merge face expressions and face centering (#11283)
* feat(face-landmarks) merge face expressions and face centering * code review * code review * code review
This commit is contained in:
parent
4b84f71021
commit
2c165d4313
2
Makefile
2
Makefile
|
@ -53,8 +53,6 @@ deploy-appbundle:
|
|||
$(OUTPUT_DIR)/analytics-ga.js \
|
||||
$(BUILD_DIR)/analytics-ga.min.js \
|
||||
$(BUILD_DIR)/analytics-ga.min.js.map \
|
||||
$(BUILD_DIR)/face-centering-worker.min.js \
|
||||
$(BUILD_DIR)/face-centering-worker.min.js.map \
|
||||
$(BUILD_DIR)/facial-expressions-worker.min.js \
|
||||
$(BUILD_DIR)/facial-expressions-worker.min.js.map \
|
||||
$(DEPLOY_DIR)
|
||||
|
|
|
@ -51,9 +51,7 @@
|
|||
"@react-navigation/native": "6.0.6",
|
||||
"@react-navigation/stack": "6.0.11",
|
||||
"@svgr/webpack": "4.3.2",
|
||||
"@tensorflow-models/blazeface": "0.0.7",
|
||||
"@tensorflow/tfjs-backend-wasm": "3.13.0",
|
||||
"@tensorflow/tfjs-converter": "3.13.0",
|
||||
"@tensorflow/tfjs-core": "3.13.0",
|
||||
"@vladmandic/face-api": "1.6.4",
|
||||
"@xmldom/xmldom": "0.7.5",
|
||||
|
@ -4959,15 +4957,6 @@
|
|||
"node": ">=8"
|
||||
}
|
||||
},
|
||||
"node_modules/@tensorflow-models/blazeface": {
|
||||
"version": "0.0.7",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow-models/blazeface/-/blazeface-0.0.7.tgz",
|
||||
"integrity": "sha512-+hInPkvHJoubfiXlmNuF3SCucZvU6W1PMC25IV99NSAftJUpKvLokfF93iX8UkOFQCXkPFbnLKacGfGlbjgvMw==",
|
||||
"peerDependencies": {
|
||||
"@tensorflow/tfjs-converter": "^3.1.0",
|
||||
"@tensorflow/tfjs-core": "^3.1.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@tensorflow/tfjs-backend-cpu": {
|
||||
"version": "3.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-cpu/-/tfjs-backend-cpu-3.13.0.tgz",
|
||||
|
@ -4995,14 +4984,6 @@
|
|||
"@tensorflow/tfjs-core": "3.13.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@tensorflow/tfjs-converter": {
|
||||
"version": "3.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-converter/-/tfjs-converter-3.13.0.tgz",
|
||||
"integrity": "sha512-H2VpDTv9Ve0HBt7ttzz46DmnsPaiT0B+yJjVH3NebGZbgY9C8boBgJIsdyqfiqEWBS3WxF8h4rh58Hv5XXMgaQ==",
|
||||
"peerDependencies": {
|
||||
"@tensorflow/tfjs-core": "3.13.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@tensorflow/tfjs-core": {
|
||||
"version": "3.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-core/-/tfjs-core-3.13.0.tgz",
|
||||
|
@ -23434,11 +23415,6 @@
|
|||
"loader-utils": "^1.2.3"
|
||||
}
|
||||
},
|
||||
"@tensorflow-models/blazeface": {
|
||||
"version": "0.0.7",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow-models/blazeface/-/blazeface-0.0.7.tgz",
|
||||
"integrity": "sha512-+hInPkvHJoubfiXlmNuF3SCucZvU6W1PMC25IV99NSAftJUpKvLokfF93iX8UkOFQCXkPFbnLKacGfGlbjgvMw=="
|
||||
},
|
||||
"@tensorflow/tfjs-backend-cpu": {
|
||||
"version": "3.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-cpu/-/tfjs-backend-cpu-3.13.0.tgz",
|
||||
|
@ -23457,11 +23433,6 @@
|
|||
"@types/emscripten": "~0.0.34"
|
||||
}
|
||||
},
|
||||
"@tensorflow/tfjs-converter": {
|
||||
"version": "3.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-converter/-/tfjs-converter-3.13.0.tgz",
|
||||
"integrity": "sha512-H2VpDTv9Ve0HBt7ttzz46DmnsPaiT0B+yJjVH3NebGZbgY9C8boBgJIsdyqfiqEWBS3WxF8h4rh58Hv5XXMgaQ=="
|
||||
},
|
||||
"@tensorflow/tfjs-core": {
|
||||
"version": "3.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-core/-/tfjs-core-3.13.0.tgz",
|
||||
|
|
|
@ -56,9 +56,7 @@
|
|||
"@react-navigation/native": "6.0.6",
|
||||
"@react-navigation/stack": "6.0.11",
|
||||
"@svgr/webpack": "4.3.2",
|
||||
"@tensorflow-models/blazeface": "0.0.7",
|
||||
"@tensorflow/tfjs-backend-wasm": "3.13.0",
|
||||
"@tensorflow/tfjs-converter": "3.13.0",
|
||||
"@tensorflow/tfjs-core": "3.13.0",
|
||||
"@vladmandic/face-api": "1.6.4",
|
||||
"@xmldom/xmldom": "0.7.5",
|
||||
|
|
|
@ -20,7 +20,6 @@ import '../shared-video/middleware';
|
|||
import '../settings/middleware';
|
||||
import '../talk-while-muted/middleware';
|
||||
import '../virtual-background/middleware';
|
||||
import '../face-centering/middleware';
|
||||
import '../facial-recognition/middleware';
|
||||
import '../gifs/middleware';
|
||||
|
||||
|
|
|
@ -2,7 +2,6 @@
|
|||
|
||||
import '../base/devices/reducer';
|
||||
import '../e2ee/reducer';
|
||||
import '../face-centering/reducer';
|
||||
import '../facial-recognition/reducer';
|
||||
import '../feedback/reducer';
|
||||
import '../local-recording/reducer';
|
||||
|
|
|
@ -1,39 +0,0 @@
|
|||
/**
|
||||
* Redux action type dispatched in order to set the time interval in which
|
||||
* the message to the face centering worker will be sent.
|
||||
*
|
||||
* {
|
||||
* type: SET_DETECTION_TIME_INTERVAL,
|
||||
* time: number
|
||||
* }
|
||||
*/
|
||||
export const SET_DETECTION_TIME_INTERVAL = 'SET_DETECTION_TIME_INTERVAL';
|
||||
|
||||
/**
|
||||
* Redux action type dispatched in order to set recognition active in the state.
|
||||
*
|
||||
* {
|
||||
* type: START_FACE_RECOGNITION
|
||||
* }
|
||||
*/
|
||||
export const START_FACE_RECOGNITION = 'START_FACE_RECOGNITION';
|
||||
|
||||
/**
|
||||
* Redux action type dispatched in order to set recognition inactive in the state.
|
||||
*
|
||||
* {
|
||||
* type: STOP_FACE_RECOGNITION
|
||||
* }
|
||||
*/
|
||||
export const STOP_FACE_RECOGNITION = 'STOP_FACE_RECOGNITION';
|
||||
|
||||
/**
|
||||
* Redux action type dispatched in order to update coordinates of a detected face.
|
||||
*
|
||||
* {
|
||||
* type: UPDATE_FACE_COORDINATES,
|
||||
* faceBox: Object({ left, bottom, right, top }),
|
||||
* participantId: string
|
||||
* }
|
||||
*/
|
||||
export const UPDATE_FACE_COORDINATES = 'UPDATE_FACE_COORDINATES';
|
|
@ -1,139 +0,0 @@
|
|||
import 'image-capture';
|
||||
|
||||
import { getCurrentConference } from '../base/conference';
|
||||
import { getLocalParticipant, getParticipantCount } from '../base/participants';
|
||||
import { getLocalVideoTrack } from '../base/tracks';
|
||||
import { getBaseUrl } from '../base/util';
|
||||
import '../facial-recognition/createImageBitmap';
|
||||
|
||||
import {
|
||||
START_FACE_RECOGNITION,
|
||||
STOP_FACE_RECOGNITION,
|
||||
UPDATE_FACE_COORDINATES
|
||||
} from './actionTypes';
|
||||
import {
|
||||
FACE_BOX_MESSAGE,
|
||||
SEND_IMAGE_INTERVAL_MS
|
||||
} from './constants';
|
||||
import { sendDataToWorker, sendFaceBoxToParticipants } from './functions';
|
||||
import logger from './logger';
|
||||
|
||||
/**
|
||||
* Interval object for sending new image data to worker.
|
||||
*/
|
||||
let interval;
|
||||
|
||||
/**
|
||||
* Object containing a image capture of the local track.
|
||||
*/
|
||||
let imageCapture;
|
||||
|
||||
/**
|
||||
* Object where the face centering worker is stored.
|
||||
*/
|
||||
let worker;
|
||||
|
||||
/**
|
||||
* Loads the worker.
|
||||
*
|
||||
* @returns {Function}
|
||||
*/
|
||||
export function loadWorker() {
|
||||
return async function(dispatch: Function, getState: Function) {
|
||||
if (navigator.product === 'ReactNative') {
|
||||
logger.warn('Unsupported environment for face centering');
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
const baseUrl = getBaseUrl();
|
||||
let workerUrl = `${baseUrl}libs/face-centering-worker.min.js`;
|
||||
|
||||
const workerBlob = new Blob([ `importScripts("${workerUrl}");` ], { type: 'application/javascript' });
|
||||
|
||||
workerUrl = window.URL.createObjectURL(workerBlob);
|
||||
worker = new Worker(workerUrl, { name: 'Face Centering Worker' });
|
||||
worker.onmessage = function(e: Object) {
|
||||
const { type, value } = e.data;
|
||||
|
||||
// receives a message with the face(s) bounding box.
|
||||
if (type === FACE_BOX_MESSAGE) {
|
||||
const state = getState();
|
||||
const conference = getCurrentConference(state);
|
||||
const localParticipant = getLocalParticipant(state);
|
||||
|
||||
if (getParticipantCount(state) > 1) {
|
||||
sendFaceBoxToParticipants(conference, value);
|
||||
}
|
||||
|
||||
dispatch({
|
||||
type: UPDATE_FACE_COORDINATES,
|
||||
faceBox: value,
|
||||
id: localParticipant.id
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
dispatch(startFaceRecognition());
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Starts the recognition and detection of face position.
|
||||
*
|
||||
* @param {Track | undefined} track - Track for which to start detecting faces.
|
||||
*
|
||||
* @returns {Function}
|
||||
*/
|
||||
export function startFaceRecognition(track) {
|
||||
return async function(dispatch: Function, getState: Function) {
|
||||
if (!worker) {
|
||||
return;
|
||||
}
|
||||
const state = getState();
|
||||
const { recognitionActive } = state['features/face-centering'];
|
||||
|
||||
if (recognitionActive) {
|
||||
logger.log('Face centering already active.');
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
const localVideoTrack = track || getLocalVideoTrack(state['features/base/tracks']);
|
||||
|
||||
if (!localVideoTrack) {
|
||||
logger.warn('Face centering is disabled due to missing local track.');
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch({ type: START_FACE_RECOGNITION });
|
||||
logger.log('Start face recognition');
|
||||
|
||||
const stream = localVideoTrack.jitsiTrack.getOriginalStream();
|
||||
const firstVideoTrack = stream.getVideoTracks()[0];
|
||||
|
||||
imageCapture = new ImageCapture(firstVideoTrack);
|
||||
const { disableLocalVideoFlip, faceCoordinatesSharing } = state['features/base/config'];
|
||||
|
||||
interval = setInterval(() => {
|
||||
sendDataToWorker(worker, imageCapture, faceCoordinatesSharing?.threshold, !disableLocalVideoFlip);
|
||||
}, faceCoordinatesSharing?.captureInterval || SEND_IMAGE_INTERVAL_MS);
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Stops the recognition and detection of face position.
|
||||
*
|
||||
* @returns {Function}
|
||||
*/
|
||||
export function stopFaceRecognition() {
|
||||
return function(dispatch: Function) {
|
||||
clearInterval(interval);
|
||||
interval = null;
|
||||
imageCapture = null;
|
||||
|
||||
dispatch({ type: STOP_FACE_RECOGNITION });
|
||||
logger.log('Stop face recognition');
|
||||
};
|
||||
}
|
|
@ -1,20 +0,0 @@
|
|||
/**
|
||||
* Type of message sent from main thread to worker that contain image data and
|
||||
* will trigger a response message from the worker containing the detected face(s) bounding box if any.
|
||||
*/
|
||||
export const DETECT_FACE_BOX = 'DETECT_FACE_BOX';
|
||||
|
||||
/**
|
||||
* Type of event sent on the data channel.
|
||||
*/
|
||||
export const FACE_BOX_EVENT_TYPE = 'face-box';
|
||||
|
||||
/**
|
||||
* Type of message sent from the worker to main thread that contains a face box or undefined.
|
||||
*/
|
||||
export const FACE_BOX_MESSAGE = 'face-box';
|
||||
|
||||
/**
|
||||
* Miliseconds interval value for sending new image data to the worker.
|
||||
*/
|
||||
export const SEND_IMAGE_INTERVAL_MS = 100;
|
|
@ -1,107 +0,0 @@
|
|||
import * as blazeface from '@tensorflow-models/blazeface';
|
||||
import { setWasmPaths } from '@tensorflow/tfjs-backend-wasm';
|
||||
import * as tf from '@tensorflow/tfjs-core';
|
||||
|
||||
import { FACE_BOX_MESSAGE, DETECT_FACE_BOX } from './constants';
|
||||
|
||||
/**
|
||||
* Indicates whether an init error occured.
|
||||
*/
|
||||
let initError = false;
|
||||
|
||||
/**
|
||||
* The blazeface model.
|
||||
*/
|
||||
let model;
|
||||
|
||||
/**
|
||||
* A flag that indicates whether the tensorflow backend is set or not.
|
||||
*/
|
||||
let backendSet = false;
|
||||
|
||||
/**
|
||||
* Flag for indicating whether an init operation (e.g setting tf backend) is in progress.
|
||||
*/
|
||||
let initInProgress = false;
|
||||
|
||||
/**
|
||||
* Callbacks queue for avoiding overlapping executions of face detection.
|
||||
*/
|
||||
const queue = [];
|
||||
|
||||
/**
|
||||
* Contains the last valid face bounding box (passes threshold validation) which was sent to the main process.
|
||||
*/
|
||||
let lastValidFaceBox;
|
||||
|
||||
const detect = async message => {
|
||||
const { baseUrl, image, isHorizontallyFlipped, threshold } = message.data;
|
||||
|
||||
if (initInProgress || initError) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (!backendSet) {
|
||||
initInProgress = true;
|
||||
setWasmPaths(`${baseUrl}libs/`);
|
||||
|
||||
try {
|
||||
await tf.setBackend('wasm');
|
||||
} catch (err) {
|
||||
initError = true;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
backendSet = true;
|
||||
initInProgress = false;
|
||||
}
|
||||
|
||||
// load face detection model
|
||||
if (!model) {
|
||||
try {
|
||||
model = await blazeface.load();
|
||||
} catch (err) {
|
||||
initError = true;
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
tf.engine().startScope();
|
||||
|
||||
const imageTensor = tf.browser.fromPixels(image);
|
||||
const detections = await model.estimateFaces(imageTensor, false, isHorizontallyFlipped, false);
|
||||
|
||||
tf.engine().endScope();
|
||||
|
||||
let faceBox;
|
||||
|
||||
if (detections.length) {
|
||||
faceBox = {
|
||||
// normalize to percentage based
|
||||
left: Math.round(Math.min(...detections.map(d => d.topLeft[0])) * 100 / image.width),
|
||||
right: Math.round(Math.max(...detections.map(d => d.bottomRight[0])) * 100 / image.width),
|
||||
top: Math.round(Math.min(...detections.map(d => d.topLeft[1])) * 100 / image.height),
|
||||
bottom: Math.round(Math.max(...detections.map(d => d.bottomRight[1])) * 100 / image.height)
|
||||
};
|
||||
|
||||
if (lastValidFaceBox && Math.abs(lastValidFaceBox.left - faceBox.left) < threshold) {
|
||||
return;
|
||||
}
|
||||
|
||||
lastValidFaceBox = faceBox;
|
||||
|
||||
self.postMessage({
|
||||
type: FACE_BOX_MESSAGE,
|
||||
value: faceBox
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
onmessage = function(message) {
|
||||
if (message.data.id === DETECT_FACE_BOX) {
|
||||
queue.push(() => detect(message));
|
||||
queue.shift()();
|
||||
}
|
||||
};
|
|
@ -1,112 +0,0 @@
|
|||
import { getBaseUrl } from '../base/util';
|
||||
|
||||
import { FACE_BOX_EVENT_TYPE, DETECT_FACE_BOX } from './constants';
|
||||
import logger from './logger';
|
||||
|
||||
/**
|
||||
* Sends the face box to all the other participants.
|
||||
*
|
||||
* @param {Object} conference - The current conference.
|
||||
* @param {Object} faceBox - Face box to be sent.
|
||||
* @returns {void}
|
||||
*/
|
||||
export function sendFaceBoxToParticipants(
|
||||
conference: Object,
|
||||
faceBox: Object
|
||||
): void {
|
||||
try {
|
||||
conference.sendEndpointMessage('', {
|
||||
type: FACE_BOX_EVENT_TYPE,
|
||||
faceBox
|
||||
});
|
||||
} catch (err) {
|
||||
logger.warn('Could not broadcast the face box to the other participants', err);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Sends the image data a canvas from the track in the image capture to the face centering worker.
|
||||
*
|
||||
* @param {Worker} worker - Face centering worker.
|
||||
* @param {Object} imageCapture - Image capture that contains the current track.
|
||||
* @param {number} threshold - Movement threshold as percentage for sharing face coordinates.
|
||||
* @param {boolean} isHorizontallyFlipped - Indicates whether the image is horizontally flipped.
|
||||
* @returns {Promise<void>}
|
||||
*/
|
||||
export async function sendDataToWorker(
|
||||
worker: Worker,
|
||||
imageCapture: Object,
|
||||
threshold: number = 10,
|
||||
isHorizontallyFlipped = true
|
||||
): Promise<void> {
|
||||
if (imageCapture === null || imageCapture === undefined) {
|
||||
return;
|
||||
}
|
||||
|
||||
let imageBitmap;
|
||||
let image;
|
||||
|
||||
try {
|
||||
imageBitmap = await imageCapture.grabFrame();
|
||||
} catch (err) {
|
||||
logger.warn(err);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
if (typeof OffscreenCanvas === 'undefined') {
|
||||
const canvas = document.createElement('canvas');
|
||||
const context = canvas.getContext('2d');
|
||||
|
||||
canvas.width = imageBitmap.width;
|
||||
canvas.height = imageBitmap.height;
|
||||
context.drawImage(imageBitmap, 0, 0);
|
||||
|
||||
image = context.getImageData(0, 0, imageBitmap.width, imageBitmap.height);
|
||||
} else {
|
||||
image = imageBitmap;
|
||||
}
|
||||
|
||||
worker.postMessage({
|
||||
id: DETECT_FACE_BOX,
|
||||
baseUrl: getBaseUrl(),
|
||||
image,
|
||||
threshold,
|
||||
isHorizontallyFlipped
|
||||
});
|
||||
|
||||
imageBitmap.close();
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets face box for a participant id.
|
||||
*
|
||||
* @param {string} id - The participant id.
|
||||
* @param {Object} state - The redux state.
|
||||
* @returns {Object}
|
||||
*/
|
||||
export function getFaceBoxForId(id: string, state: Object) {
|
||||
return state['features/face-centering'].faceBoxes[id];
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the video object position for a participant id.
|
||||
*
|
||||
* @param {Object} state - The redux state.
|
||||
* @param {string} id - The participant id.
|
||||
* @returns {string} - CSS object-position in the shape of '{horizontalPercentage}% {verticalPercentage}%'.
|
||||
*/
|
||||
export function getVideoObjectPosition(state: Object, id: string) {
|
||||
const faceBox = getFaceBoxForId(id, state);
|
||||
|
||||
if (faceBox) {
|
||||
const { left, right, top, bottom } = faceBox;
|
||||
|
||||
const horizontalPos = 100 - Math.round((left + right) / 2, 100);
|
||||
const verticalPos = 100 - Math.round((top + bottom) / 2, 100);
|
||||
|
||||
return `${horizontalPos}% ${verticalPos}%`;
|
||||
}
|
||||
|
||||
return '50% 50%';
|
||||
}
|
|
@ -1,3 +0,0 @@
|
|||
import { getLogger } from '../base/logging/functions';
|
||||
|
||||
export default getLogger('features/face-centering');
|
|
@ -1,103 +0,0 @@
|
|||
import {
|
||||
CONFERENCE_JOINED,
|
||||
CONFERENCE_WILL_LEAVE,
|
||||
getCurrentConference
|
||||
} from '../base/conference';
|
||||
import { JitsiConferenceEvents } from '../base/lib-jitsi-meet';
|
||||
import { MiddlewareRegistry } from '../base/redux';
|
||||
import { TRACK_UPDATED, TRACK_REMOVED, TRACK_ADDED } from '../base/tracks';
|
||||
|
||||
import { UPDATE_FACE_COORDINATES } from './actionTypes';
|
||||
import {
|
||||
loadWorker,
|
||||
stopFaceRecognition,
|
||||
startFaceRecognition
|
||||
} from './actions';
|
||||
import { FACE_BOX_EVENT_TYPE } from './constants';
|
||||
|
||||
MiddlewareRegistry.register(({ dispatch, getState }) => next => action => {
|
||||
const state = getState();
|
||||
const { faceCoordinatesSharing } = state['features/base/config'];
|
||||
|
||||
if (!getCurrentConference(state)) {
|
||||
return next(action);
|
||||
}
|
||||
|
||||
if (action.type === CONFERENCE_JOINED) {
|
||||
if (faceCoordinatesSharing?.enabled) {
|
||||
dispatch(loadWorker());
|
||||
}
|
||||
|
||||
// allow using remote face centering data when local face centering is not enabled
|
||||
action.conference.on(
|
||||
JitsiConferenceEvents.ENDPOINT_MESSAGE_RECEIVED,
|
||||
(participant, eventData) => {
|
||||
if (!participant || !eventData) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (eventData.type === FACE_BOX_EVENT_TYPE) {
|
||||
dispatch({
|
||||
type: UPDATE_FACE_COORDINATES,
|
||||
faceBox: eventData.faceBox,
|
||||
id: participant.getId()
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
return next(action);
|
||||
}
|
||||
|
||||
if (!faceCoordinatesSharing?.enabled) {
|
||||
return next(action);
|
||||
}
|
||||
|
||||
switch (action.type) {
|
||||
case CONFERENCE_WILL_LEAVE : {
|
||||
dispatch(stopFaceRecognition());
|
||||
|
||||
return next(action);
|
||||
}
|
||||
case TRACK_ADDED: {
|
||||
const { jitsiTrack: { isLocal, videoType } } = action.track;
|
||||
|
||||
if (videoType === 'camera' && isLocal()) {
|
||||
// need to pass this since the track is not yet added in the store
|
||||
dispatch(startFaceRecognition(action.track));
|
||||
}
|
||||
|
||||
return next(action);
|
||||
}
|
||||
case TRACK_UPDATED: {
|
||||
const { jitsiTrack: { isLocal, videoType } } = action.track;
|
||||
|
||||
if (videoType !== 'camera' || !isLocal()) {
|
||||
return next(action);
|
||||
}
|
||||
|
||||
const { muted } = action.track;
|
||||
|
||||
if (muted !== undefined) {
|
||||
// addresses video mute state changes
|
||||
if (muted) {
|
||||
dispatch(stopFaceRecognition());
|
||||
} else {
|
||||
dispatch(startFaceRecognition());
|
||||
}
|
||||
}
|
||||
|
||||
return next(action);
|
||||
}
|
||||
case TRACK_REMOVED: {
|
||||
const { jitsiTrack: { isLocal, videoType } } = action.track;
|
||||
|
||||
if (videoType === 'camera' && isLocal()) {
|
||||
dispatch(stopFaceRecognition());
|
||||
}
|
||||
|
||||
return next(action);
|
||||
}
|
||||
}
|
||||
|
||||
return next(action);
|
||||
});
|
|
@ -1,55 +0,0 @@
|
|||
import { ReducerRegistry } from '../base/redux';
|
||||
|
||||
import {
|
||||
START_FACE_RECOGNITION,
|
||||
STOP_FACE_RECOGNITION,
|
||||
UPDATE_FACE_COORDINATES
|
||||
} from './actionTypes';
|
||||
|
||||
/**
|
||||
* The default state object.
|
||||
*/
|
||||
const defaultState = {
|
||||
/**
|
||||
* Map of participant ids containing their respective facebox in the shape of a left, right, bottom, top percentages
|
||||
* The percentages indicate the distance of the detected face starting edge (top or left) to the corresponding edge.
|
||||
*
|
||||
* Examples:
|
||||
* 70% left indicates a 70% distance from the left edge of the video to the left edge of the detected face.
|
||||
* 70% right indicates a 70% distance from the right edge of the video to the left edge of the detected face.
|
||||
* 30% top indicates a 30% distance from the top edge of the video to the top edge of the detected face.
|
||||
* 30% bottom indicates a 30% distance from the bottom edge of the video to the top edge of the detected face.
|
||||
*/
|
||||
faceBoxes: {},
|
||||
|
||||
/**
|
||||
* Flag indicating whether face recognition is currently running.
|
||||
*/
|
||||
recognitionActive: false
|
||||
};
|
||||
|
||||
ReducerRegistry.register('features/face-centering', (state = defaultState, action) => {
|
||||
switch (action.type) {
|
||||
case UPDATE_FACE_COORDINATES: {
|
||||
return {
|
||||
...state,
|
||||
faceBoxes: {
|
||||
...state.faceBoxes,
|
||||
[action.id]: action.faceBox
|
||||
}
|
||||
};
|
||||
}
|
||||
case START_FACE_RECOGNITION: {
|
||||
return {
|
||||
...state,
|
||||
recognitionActive: true
|
||||
};
|
||||
}
|
||||
|
||||
case STOP_FACE_RECOGNITION: {
|
||||
return defaultState;
|
||||
}
|
||||
}
|
||||
|
||||
return state;
|
||||
});
|
|
@ -11,17 +11,6 @@
|
|||
*/
|
||||
export const ADD_FACIAL_EXPRESSION = 'ADD_FACIAL_EXPRESSION';
|
||||
|
||||
/**
|
||||
* Redux action type dispatched in order to set the time interval in which
|
||||
* the message to the facial expression worker will be sent.
|
||||
*
|
||||
* {
|
||||
* type: SET_DETECTION_TIME_INTERVAL,
|
||||
* time: number
|
||||
* }
|
||||
*/
|
||||
export const SET_DETECTION_TIME_INTERVAL = 'SET_DETECTION_TIME_INTERVAL';
|
||||
|
||||
/**
|
||||
* Redux action type dispatched in order to set recognition active in the state.
|
||||
*
|
||||
|
@ -57,3 +46,14 @@ export const CLEAR_FACIAL_EXPRESSIONS_BUFFER = 'CLEAR_FACIAL_EXPRESSIONS_BUFFER'
|
|||
* }
|
||||
*/
|
||||
export const ADD_TO_FACIAL_EXPRESSIONS_BUFFER = 'ADD_TO_FACIAL_EXPRESSIONS_BUFFER ';
|
||||
|
||||
/**
|
||||
* Redux action type dispatched in order to update coordinates of a detected face.
|
||||
*
|
||||
* {
|
||||
* type: UPDATE_FACE_COORDINATES,
|
||||
* faceBox: Object({ left, bottom, right, top }),
|
||||
* participantId: string
|
||||
* }
|
||||
*/
|
||||
export const UPDATE_FACE_COORDINATES = 'UPDATE_FACE_COORDINATES';
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
import 'image-capture';
|
||||
import './createImageBitmap';
|
||||
|
||||
import { getCurrentConference } from '../base/conference';
|
||||
import { getLocalParticipant, getParticipantCount } from '../base/participants';
|
||||
import { getLocalVideoTrack } from '../base/tracks';
|
||||
import { getBaseUrl } from '../base/util';
|
||||
|
||||
|
@ -9,18 +11,21 @@ import {
|
|||
ADD_FACIAL_EXPRESSION,
|
||||
ADD_TO_FACIAL_EXPRESSIONS_BUFFER,
|
||||
CLEAR_FACIAL_EXPRESSIONS_BUFFER,
|
||||
SET_DETECTION_TIME_INTERVAL,
|
||||
START_FACIAL_RECOGNITION,
|
||||
STOP_FACIAL_RECOGNITION
|
||||
STOP_FACIAL_RECOGNITION,
|
||||
UPDATE_FACE_COORDINATES
|
||||
} from './actionTypes';
|
||||
import {
|
||||
CLEAR_TIMEOUT,
|
||||
FACIAL_EXPRESSION_MESSAGE,
|
||||
DETECTION_TYPES,
|
||||
INIT_WORKER,
|
||||
INTERVAL_MESSAGE,
|
||||
WEBHOOK_SEND_TIME_INTERVAL
|
||||
} from './constants';
|
||||
import { sendDataToWorker, sendFacialExpressionsWebhook } from './functions';
|
||||
import {
|
||||
getDetectionInterval,
|
||||
sendDataToWorker,
|
||||
sendFaceBoxToParticipants,
|
||||
sendFacialExpressionsWebhook
|
||||
} from './functions';
|
||||
import logger from './logger';
|
||||
|
||||
/**
|
||||
|
@ -52,7 +57,12 @@ let duplicateConsecutiveExpressions = 0;
|
|||
/**
|
||||
* Variable that keeps the interval for sending expressions to webhook.
|
||||
*/
|
||||
let sendInterval;
|
||||
let webhookSendInterval;
|
||||
|
||||
/**
|
||||
* Variable that keeps the interval for detecting faces in a frame.
|
||||
*/
|
||||
let detectionInterval;
|
||||
|
||||
/**
|
||||
* Loads the worker that predicts the facial expression.
|
||||
|
@ -60,61 +70,75 @@ let sendInterval;
|
|||
* @returns {void}
|
||||
*/
|
||||
export function loadWorker() {
|
||||
return function(dispatch: Function) {
|
||||
if (!window.Worker) {
|
||||
logger.warn('Browser does not support web workers');
|
||||
return function(dispatch: Function, getState: Function) {
|
||||
if (worker) {
|
||||
logger.info('Worker has already been initialized');
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
const baseUrl = `${getBaseUrl()}/libs/`;
|
||||
if (navigator.product === 'ReactNative') {
|
||||
logger.warn('Unsupported environment for face recognition');
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
const baseUrl = `${getBaseUrl()}libs/`;
|
||||
let workerUrl = `${baseUrl}facial-expressions-worker.min.js`;
|
||||
|
||||
const workerBlob = new Blob([ `importScripts("${workerUrl}");` ], { type: 'application/javascript' });
|
||||
|
||||
workerUrl = window.URL.createObjectURL(workerBlob);
|
||||
worker = new Worker(workerUrl, { name: 'Facial Expression Worker' });
|
||||
worker = new Worker(workerUrl, { name: 'Face Recognition Worker' });
|
||||
worker.onmessage = function(e: Object) {
|
||||
const { type, value } = e.data;
|
||||
const { faceExpression, faceBox } = e.data;
|
||||
|
||||
// receives a message indicating what type of backend tfjs decided to use.
|
||||
// it is received after as a response to the first message sent to the worker.
|
||||
if (type === INTERVAL_MESSAGE) {
|
||||
value && dispatch(setDetectionTimeInterval(value));
|
||||
}
|
||||
|
||||
// receives a message with the predicted facial expression.
|
||||
if (type === FACIAL_EXPRESSION_MESSAGE) {
|
||||
sendDataToWorker(worker, imageCapture);
|
||||
if (!value) {
|
||||
return;
|
||||
}
|
||||
if (value === lastFacialExpression) {
|
||||
if (faceExpression) {
|
||||
if (faceExpression === lastFacialExpression) {
|
||||
duplicateConsecutiveExpressions++;
|
||||
} else {
|
||||
if (lastFacialExpression && lastFacialExpressionTimestamp) {
|
||||
dispatch(
|
||||
addFacialExpression(
|
||||
dispatch(addFacialExpression(
|
||||
lastFacialExpression,
|
||||
duplicateConsecutiveExpressions + 1,
|
||||
lastFacialExpressionTimestamp
|
||||
)
|
||||
);
|
||||
));
|
||||
}
|
||||
lastFacialExpression = value;
|
||||
lastFacialExpression = faceExpression;
|
||||
lastFacialExpressionTimestamp = Date.now();
|
||||
duplicateConsecutiveExpressions = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (faceBox) {
|
||||
const state = getState();
|
||||
const conference = getCurrentConference(state);
|
||||
const localParticipant = getLocalParticipant(state);
|
||||
|
||||
if (getParticipantCount(state) > 1) {
|
||||
sendFaceBoxToParticipants(conference, faceBox);
|
||||
}
|
||||
|
||||
dispatch({
|
||||
type: UPDATE_FACE_COORDINATES,
|
||||
faceBox,
|
||||
id: localParticipant.id
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
const { enableFacialRecognition, faceCoordinatesSharing } = getState()['features/base/config'];
|
||||
const detectionTypes = [
|
||||
faceCoordinatesSharing?.enabled && DETECTION_TYPES.FACE_BOX,
|
||||
enableFacialRecognition && DETECTION_TYPES.FACE_EXPRESSIONS
|
||||
].filter(Boolean);
|
||||
|
||||
worker.postMessage({
|
||||
type: INIT_WORKER,
|
||||
url: baseUrl,
|
||||
windowScreenSize: window.screen ? {
|
||||
width: window.screen.width,
|
||||
height: window.screen.height
|
||||
} : undefined
|
||||
baseUrl,
|
||||
detectionTypes
|
||||
});
|
||||
|
||||
dispatch(startFacialRecognition());
|
||||
};
|
||||
}
|
||||
|
@ -122,10 +146,10 @@ export function loadWorker() {
|
|||
/**
|
||||
* Starts the recognition and detection of face expressions.
|
||||
*
|
||||
* @param {Object} stream - Video stream.
|
||||
* @param {Track | undefined} track - Track for which to start detecting faces.
|
||||
* @returns {Function}
|
||||
*/
|
||||
export function startFacialRecognition() {
|
||||
export function startFacialRecognition(track) {
|
||||
return async function(dispatch: Function, getState: Function) {
|
||||
if (!worker) {
|
||||
return;
|
||||
|
@ -135,33 +159,46 @@ export function startFacialRecognition() {
|
|||
const { recognitionActive } = state['features/facial-recognition'];
|
||||
|
||||
if (recognitionActive) {
|
||||
logger.log('Face recognition already active.');
|
||||
|
||||
return;
|
||||
}
|
||||
const localVideoTrack = getLocalVideoTrack(state['features/base/tracks']);
|
||||
|
||||
const localVideoTrack = track || getLocalVideoTrack(state['features/base/tracks']);
|
||||
|
||||
if (localVideoTrack === undefined) {
|
||||
logger.warn('Facial recognition is disabled due to missing local track.');
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
const stream = localVideoTrack.jitsiTrack.getOriginalStream();
|
||||
|
||||
if (stream === null) {
|
||||
return;
|
||||
}
|
||||
dispatch({ type: START_FACIAL_RECOGNITION });
|
||||
logger.log('Start face recognition');
|
||||
const firstVideoTrack = stream.getVideoTracks()[0];
|
||||
|
||||
// $FlowFixMe
|
||||
const firstVideoTrack = stream.getVideoTracks()[0];
|
||||
const { enableFacialRecognition, faceCoordinatesSharing } = state['features/base/config'];
|
||||
|
||||
imageCapture = new ImageCapture(firstVideoTrack);
|
||||
sendDataToWorker(worker, imageCapture);
|
||||
sendInterval = setInterval(async () => {
|
||||
|
||||
detectionInterval = setInterval(() => {
|
||||
sendDataToWorker(
|
||||
worker,
|
||||
imageCapture,
|
||||
faceCoordinatesSharing?.threshold
|
||||
);
|
||||
}, getDetectionInterval(state));
|
||||
|
||||
if (enableFacialRecognition) {
|
||||
webhookSendInterval = setInterval(async () => {
|
||||
const result = await sendFacialExpressionsWebhook(getState());
|
||||
|
||||
if (result) {
|
||||
dispatch(clearFacialExpressionBuffer());
|
||||
}
|
||||
}, WEBHOOK_SEND_TIME_INTERVAL);
|
||||
}
|
||||
, WEBHOOK_SEND_TIME_INTERVAL);
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -171,20 +208,7 @@ export function startFacialRecognition() {
|
|||
* @returns {void}
|
||||
*/
|
||||
export function stopFacialRecognition() {
|
||||
return function(dispatch: Function, getState: Function) {
|
||||
const state = getState();
|
||||
const { recognitionActive } = state['features/facial-recognition'];
|
||||
|
||||
if (!recognitionActive) {
|
||||
imageCapture = null;
|
||||
|
||||
return;
|
||||
}
|
||||
imageCapture = null;
|
||||
worker.postMessage({
|
||||
type: CLEAR_TIMEOUT
|
||||
});
|
||||
|
||||
return function(dispatch: Function) {
|
||||
if (lastFacialExpression && lastFacialExpressionTimestamp) {
|
||||
dispatch(
|
||||
addFacialExpression(
|
||||
|
@ -194,50 +218,20 @@ export function stopFacialRecognition() {
|
|||
)
|
||||
);
|
||||
}
|
||||
duplicateConsecutiveExpressions = 0;
|
||||
|
||||
if (sendInterval) {
|
||||
clearInterval(sendInterval);
|
||||
sendInterval = null;
|
||||
}
|
||||
clearInterval(webhookSendInterval);
|
||||
clearInterval(detectionInterval);
|
||||
|
||||
duplicateConsecutiveExpressions = 0;
|
||||
webhookSendInterval = null;
|
||||
detectionInterval = null;
|
||||
imageCapture = null;
|
||||
|
||||
dispatch({ type: STOP_FACIAL_RECOGNITION });
|
||||
logger.log('Stop face recognition');
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Resets the track in the image capture.
|
||||
*
|
||||
* @returns {void}
|
||||
*/
|
||||
export function resetTrack() {
|
||||
return function(dispatch: Function, getState: Function) {
|
||||
const state = getState();
|
||||
const { jitsiTrack: localVideoTrack } = getLocalVideoTrack(state['features/base/tracks']);
|
||||
const stream = localVideoTrack.getOriginalStream();
|
||||
const firstVideoTrack = stream.getVideoTracks()[0];
|
||||
|
||||
// $FlowFixMe
|
||||
imageCapture = new ImageCapture(firstVideoTrack);
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Changes the track from the image capture with a given one.
|
||||
*
|
||||
* @param {Object} track - The track that will be in the new image capture.
|
||||
* @returns {void}
|
||||
*/
|
||||
export function changeTrack(track: Object) {
|
||||
const { jitsiTrack } = track;
|
||||
const stream = jitsiTrack.getOriginalStream();
|
||||
const firstVideoTrack = stream.getVideoTracks()[0];
|
||||
|
||||
// $FlowFixMe
|
||||
imageCapture = new ImageCapture(firstVideoTrack);
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds a new facial expression and its duration.
|
||||
*
|
||||
|
@ -248,12 +242,8 @@ export function changeTrack(track: Object) {
|
|||
*/
|
||||
function addFacialExpression(facialExpression: string, duration: number, timestamp: number) {
|
||||
return function(dispatch: Function, getState: Function) {
|
||||
const { detectionTimeInterval } = getState()['features/facial-recognition'];
|
||||
let finalDuration = duration;
|
||||
const finalDuration = duration * getDetectionInterval(getState()) / 1000;
|
||||
|
||||
if (detectionTimeInterval !== -1) {
|
||||
finalDuration *= detectionTimeInterval / 1000;
|
||||
}
|
||||
dispatch({
|
||||
type: ADD_FACIAL_EXPRESSION,
|
||||
facialExpression,
|
||||
|
@ -263,19 +253,6 @@ function addFacialExpression(facialExpression: string, duration: number, timesta
|
|||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the time interval for the detection worker post message.
|
||||
*
|
||||
* @param {number} time - The time interval.
|
||||
* @returns {Object}
|
||||
*/
|
||||
function setDetectionTimeInterval(time: number) {
|
||||
return {
|
||||
type: SET_DETECTION_TIME_INTERVAL,
|
||||
time
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds a facial expression with its timestamp to the facial expression buffer.
|
||||
*
|
||||
|
|
|
@ -13,16 +13,6 @@ export const FACIAL_EXPRESSION_EMOJIS = {
|
|||
|
||||
export const FACIAL_EXPRESSIONS = [ 'happy', 'neutral', 'sad', 'surprised', 'angry', 'fearful' ];
|
||||
|
||||
/**
|
||||
* Time used for detection interval when facial expressions worker uses webgl backend.
|
||||
*/
|
||||
export const WEBGL_TIME_INTERVAL = 1000;
|
||||
|
||||
/**
|
||||
* Time used for detection interval when facial expression worker uses cpu backend.
|
||||
*/
|
||||
export const CPU_TIME_INTERVAL = 6000;
|
||||
|
||||
/**
|
||||
* Time is ms used for sending expression.
|
||||
*/
|
||||
|
@ -34,25 +24,26 @@ export const WEBHOOK_SEND_TIME_INTERVAL = 15000;
|
|||
*/
|
||||
export const INIT_WORKER = 'INIT_WORKER';
|
||||
|
||||
/**
|
||||
* Type of event sent on the data channel.
|
||||
*/
|
||||
export const FACE_BOX_EVENT_TYPE = 'face-box';
|
||||
|
||||
/**
|
||||
* Miliseconds interval value for sending new image data to the worker.
|
||||
*/
|
||||
export const SEND_IMAGE_INTERVAL_MS = 1000;
|
||||
|
||||
/**
|
||||
* Type of message sent from main thread to worker that contain image data and
|
||||
* will set a timeout for sending back the expression if detected in the worker.
|
||||
* will trigger a response message from the worker containing the detected face(s) info.
|
||||
*/
|
||||
export const SET_TIMEOUT = 'SET_TIMEOUT';
|
||||
export const DETECT_FACE = 'DETECT_FACE';
|
||||
|
||||
/**
|
||||
* Type of message sent from main thread to worker that will stop the recognition;
|
||||
* the worker will clear the timeout and then will send nothing back.
|
||||
* Available detection types.
|
||||
*/
|
||||
export const CLEAR_TIMEOUT = 'CLEAR_TIMEOUT';
|
||||
|
||||
/**
|
||||
* Type of message sent from the worker to main thread that contains a facial expression or undefined.
|
||||
*/
|
||||
export const FACIAL_EXPRESSION_MESSAGE = 'FACIAL_EXPRESSION_MESSAGE_TYPE';
|
||||
|
||||
/**
|
||||
* Type of message sent from the worker to main thread that contains the time interval chosen by the worker.
|
||||
*/
|
||||
export const INTERVAL_MESSAGE = 'INTERVAL_MESSAGE_TYPE';
|
||||
export const DETECTION_TYPES = {
|
||||
FACE_BOX: 'face-box',
|
||||
FACE_EXPRESSIONS: 'face-expressions'
|
||||
};
|
||||
|
|
|
@ -2,7 +2,9 @@
|
|||
// From: https://github.com/justadudewhohacks/face-api.js/issues/47
|
||||
// This is needed because face-api.js does not support working in a WebWorker natively
|
||||
// Updated Dec 1 2020 to work on latest Chrome (tested in WebWorkers on Chrome Mobile on Android / Google Pixel 3 as well)
|
||||
self.useWasm = false;
|
||||
if(!self.OffscreenCanvas) {
|
||||
self.useWasm = true;
|
||||
self.OffscreenCanvas = class OffscreenCanvas {
|
||||
constructor() {
|
||||
|
||||
|
|
|
@ -1,120 +1,158 @@
|
|||
// @flow
|
||||
import './faceApiPatch';
|
||||
|
||||
import { setWasmPaths } from '@tensorflow/tfjs-backend-wasm';
|
||||
import * as faceapi from '@vladmandic/face-api';
|
||||
|
||||
import {
|
||||
CLEAR_TIMEOUT,
|
||||
CPU_TIME_INTERVAL,
|
||||
FACIAL_EXPRESSION_MESSAGE,
|
||||
INIT_WORKER,
|
||||
SET_TIMEOUT,
|
||||
INTERVAL_MESSAGE,
|
||||
WEBGL_TIME_INTERVAL
|
||||
} from './constants';
|
||||
import { DETECTION_TYPES, DETECT_FACE, INIT_WORKER } from './constants';
|
||||
|
||||
/**
|
||||
* A flag that indicates whether the tensorflow models were loaded or not.
|
||||
* Detection types to be applied.
|
||||
*/
|
||||
let faceDetectionTypes = [];
|
||||
|
||||
/**
|
||||
* Indicates whether an init error occured.
|
||||
*/
|
||||
let initError = false;
|
||||
|
||||
/**
|
||||
* A flag that indicates whether the models are loaded or not.
|
||||
*/
|
||||
let modelsLoaded = false;
|
||||
|
||||
/**
|
||||
* The url where the models for the facial detection of expressions are located.
|
||||
*/
|
||||
let modelsURL;
|
||||
|
||||
/**
|
||||
* A flag that indicates whether the tensorflow backend is set or not.
|
||||
*/
|
||||
let backendSet = false;
|
||||
|
||||
/**
|
||||
* A timer variable for set interval.
|
||||
* Flag for indicating whether a face detection flow is in progress or not.
|
||||
*/
|
||||
let timer;
|
||||
let detectionInProgress = false;
|
||||
|
||||
/**
|
||||
* The duration of the set timeout.
|
||||
* Contains the last valid face bounding box (passes threshold validation) which was sent to the main process.
|
||||
*/
|
||||
let timeoutDuration = -1;
|
||||
let lastValidFaceBox;
|
||||
|
||||
/**
|
||||
* A patch for having window object in the worker.
|
||||
*/
|
||||
const window = {
|
||||
screen: {
|
||||
width: 1280,
|
||||
height: 720
|
||||
const detectFaceBox = async ({ detections, threshold }) => {
|
||||
if (!detections.length) {
|
||||
return null;
|
||||
}
|
||||
|
||||
const faceBox = {
|
||||
// normalize to percentage based
|
||||
left: Math.round(Math.min(...detections.map(d => d.relativeBox.left)) * 100),
|
||||
right: Math.round(Math.max(...detections.map(d => d.relativeBox.right)) * 100)
|
||||
};
|
||||
|
||||
onmessage = async function(message) {
|
||||
switch (message.data.type) {
|
||||
case INIT_WORKER : {
|
||||
modelsURL = message.data.url;
|
||||
if (message.data.windowScreenSize) {
|
||||
window.screen = message.data.windowScreenSize;
|
||||
}
|
||||
break;
|
||||
faceBox.width = Math.round(faceBox.right - faceBox.left);
|
||||
|
||||
if (lastValidFaceBox && Math.abs(lastValidFaceBox.left - faceBox.left) < threshold) {
|
||||
return null;
|
||||
}
|
||||
|
||||
case SET_TIMEOUT : {
|
||||
if (!message.data.imageBitmap || !modelsURL) {
|
||||
self.postMessage({
|
||||
type: FACIAL_EXPRESSION_MESSAGE,
|
||||
value: null
|
||||
});
|
||||
}
|
||||
lastValidFaceBox = faceBox;
|
||||
|
||||
// the models are loaded
|
||||
if (!modelsLoaded) {
|
||||
await faceapi.loadTinyFaceDetectorModel(modelsURL);
|
||||
await faceapi.loadFaceExpressionModel(modelsURL);
|
||||
modelsLoaded = true;
|
||||
}
|
||||
return faceBox;
|
||||
};
|
||||
|
||||
const detectFaceExpression = async ({ detections }) =>
|
||||
detections[0]?.expressions.asSortedArray()[0].expression;
|
||||
|
||||
const detect = async ({ image, threshold }) => {
|
||||
let detections;
|
||||
let faceExpression;
|
||||
let faceBox;
|
||||
|
||||
detectionInProgress = true;
|
||||
faceapi.tf.engine().startScope();
|
||||
const tensor = faceapi.tf.browser.fromPixels(message.data.imageBitmap);
|
||||
const detections = await faceapi.detectSingleFace(
|
||||
tensor,
|
||||
|
||||
const imageTensor = faceapi.tf.browser.fromPixels(image);
|
||||
|
||||
if (faceDetectionTypes.includes(DETECTION_TYPES.FACE_EXPRESSIONS)) {
|
||||
detections = await faceapi.detectAllFaces(
|
||||
imageTensor,
|
||||
new faceapi.TinyFaceDetectorOptions()
|
||||
).withFaceExpressions();
|
||||
|
||||
// The backend is set
|
||||
if (!backendSet) {
|
||||
const backend = faceapi.tf.getBackend();
|
||||
faceExpression = await detectFaceExpression({ detections });
|
||||
}
|
||||
|
||||
if (backend) {
|
||||
if (backend === 'webgl') {
|
||||
timeoutDuration = WEBGL_TIME_INTERVAL;
|
||||
} else if (backend === 'cpu') {
|
||||
timeoutDuration = CPU_TIME_INTERVAL;
|
||||
}
|
||||
self.postMessage({
|
||||
type: INTERVAL_MESSAGE,
|
||||
value: timeoutDuration
|
||||
if (faceDetectionTypes.includes(DETECTION_TYPES.FACE_BOX)) {
|
||||
detections = detections
|
||||
? detections.map(d => d.detection)
|
||||
: await faceapi.detectAllFaces(imageTensor, new faceapi.TinyFaceDetectorOptions());
|
||||
|
||||
faceBox = await detectFaceBox({
|
||||
detections,
|
||||
threshold
|
||||
});
|
||||
backendSet = true;
|
||||
}
|
||||
}
|
||||
|
||||
faceapi.tf.engine().endScope();
|
||||
let facialExpression;
|
||||
|
||||
if (detections) {
|
||||
facialExpression = detections.expressions.asSortedArray()[0].expression;
|
||||
}
|
||||
timer = setTimeout(() => {
|
||||
if (faceBox || faceExpression) {
|
||||
self.postMessage({
|
||||
type: FACIAL_EXPRESSION_MESSAGE,
|
||||
value: facialExpression
|
||||
faceBox,
|
||||
faceExpression
|
||||
});
|
||||
}, timeoutDuration);
|
||||
}
|
||||
|
||||
detectionInProgress = false;
|
||||
};
|
||||
|
||||
const init = async ({ baseUrl, detectionTypes }) => {
|
||||
faceDetectionTypes = detectionTypes;
|
||||
|
||||
if (!backendSet) {
|
||||
try {
|
||||
if (self.useWasm) {
|
||||
setWasmPaths(baseUrl);
|
||||
await faceapi.tf.setBackend('wasm');
|
||||
} else {
|
||||
await faceapi.tf.setBackend('webgl');
|
||||
}
|
||||
backendSet = true;
|
||||
} catch (err) {
|
||||
initError = true;
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// load face detection model
|
||||
if (!modelsLoaded) {
|
||||
try {
|
||||
await faceapi.loadTinyFaceDetectorModel(baseUrl);
|
||||
|
||||
if (detectionTypes.includes(DETECTION_TYPES.FACE_EXPRESSIONS)) {
|
||||
await faceapi.loadFaceExpressionModel(baseUrl);
|
||||
}
|
||||
|
||||
modelsLoaded = true;
|
||||
} catch (err) {
|
||||
initError = true;
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
onmessage = function(message) {
|
||||
switch (message.data.type) {
|
||||
case DETECT_FACE: {
|
||||
if (!backendSet || !modelsLoaded || initError || detectionInProgress) {
|
||||
return;
|
||||
}
|
||||
|
||||
detect(message.data);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case CLEAR_TIMEOUT: {
|
||||
if (timer) {
|
||||
clearTimeout(timer);
|
||||
timer = null;
|
||||
}
|
||||
case INIT_WORKER: {
|
||||
init(message.data);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2,9 +2,17 @@
|
|||
import { getLocalParticipant } from '../base/participants';
|
||||
import { extractFqnFromPath } from '../dynamic-branding';
|
||||
|
||||
import { SET_TIMEOUT } from './constants';
|
||||
import { DETECT_FACE, FACE_BOX_EVENT_TYPE, SEND_IMAGE_INTERVAL_MS } from './constants';
|
||||
import logger from './logger';
|
||||
|
||||
let canvas;
|
||||
let context;
|
||||
|
||||
if (typeof OffscreenCanvas === 'undefined') {
|
||||
canvas = document.createElement('canvas');
|
||||
context = canvas.getContext('2d');
|
||||
}
|
||||
|
||||
/**
|
||||
* Sends the facial expression with its duration to all the other participants.
|
||||
*
|
||||
|
@ -30,6 +38,27 @@ export function sendFacialExpressionToParticipants(
|
|||
|
||||
}
|
||||
|
||||
/**
|
||||
* Sends the face box to all the other participants.
|
||||
*
|
||||
* @param {Object} conference - The current conference.
|
||||
* @param {Object} faceBox - Face box to be sent.
|
||||
* @returns {void}
|
||||
*/
|
||||
export function sendFaceBoxToParticipants(
|
||||
conference: Object,
|
||||
faceBox: Object
|
||||
): void {
|
||||
try {
|
||||
conference.sendEndpointMessage('', {
|
||||
type: FACE_BOX_EVENT_TYPE,
|
||||
faceBox
|
||||
});
|
||||
} catch (err) {
|
||||
logger.warn('Could not broadcast the face box to the other participants', err);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Sends the facial expression with its duration to xmpp server.
|
||||
*
|
||||
|
@ -107,21 +136,26 @@ export async function sendFacialExpressionsWebhook(state: Object) {
|
|||
return false;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Sends the image data a canvas from the track in the image capture to the facial expression worker.
|
||||
* Sends the image data a canvas from the track in the image capture to the face recognition worker.
|
||||
*
|
||||
* @param {Worker} worker - Facial expression worker.
|
||||
* @param {Worker} worker - Face recognition worker.
|
||||
* @param {Object} imageCapture - Image capture that contains the current track.
|
||||
* @param {number} threshold - Movement threshold as percentage for sharing face coordinates.
|
||||
* @returns {Promise<void>}
|
||||
*/
|
||||
export async function sendDataToWorker(
|
||||
worker: Worker,
|
||||
imageCapture: Object
|
||||
imageCapture: Object,
|
||||
threshold: number = 10
|
||||
): Promise<void> {
|
||||
if (imageCapture === null || imageCapture === undefined) {
|
||||
return;
|
||||
}
|
||||
|
||||
let imageBitmap;
|
||||
let image;
|
||||
|
||||
try {
|
||||
imageBitmap = await imageCapture.grabFrame();
|
||||
|
@ -131,8 +165,63 @@ export async function sendDataToWorker(
|
|||
return;
|
||||
}
|
||||
|
||||
worker.postMessage({
|
||||
type: SET_TIMEOUT,
|
||||
imageBitmap
|
||||
});
|
||||
if (typeof OffscreenCanvas === 'undefined') {
|
||||
canvas.width = imageBitmap.width;
|
||||
canvas.height = imageBitmap.height;
|
||||
context.drawImage(imageBitmap, 0, 0);
|
||||
|
||||
image = context.getImageData(0, 0, imageBitmap.width, imageBitmap.height);
|
||||
} else {
|
||||
image = imageBitmap;
|
||||
}
|
||||
|
||||
worker.postMessage({
|
||||
type: DETECT_FACE,
|
||||
image,
|
||||
threshold
|
||||
});
|
||||
|
||||
imageBitmap.close();
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets face box for a participant id.
|
||||
*
|
||||
* @param {string} id - The participant id.
|
||||
* @param {Object} state - The redux state.
|
||||
* @returns {Object}
|
||||
*/
|
||||
function getFaceBoxForId(id: string, state: Object) {
|
||||
return state['features/facial-recognition'].faceBoxes[id];
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the video object position for a participant id.
|
||||
*
|
||||
* @param {Object} state - The redux state.
|
||||
* @param {string} id - The participant id.
|
||||
* @returns {string} - CSS object-position in the shape of '{horizontalPercentage}% {verticalPercentage}%'.
|
||||
*/
|
||||
export function getVideoObjectPosition(state: Object, id: string) {
|
||||
const faceBox = getFaceBoxForId(id, state);
|
||||
|
||||
if (faceBox) {
|
||||
const { right, width } = faceBox;
|
||||
|
||||
return `${right - (width / 2)}% 50%`;
|
||||
}
|
||||
|
||||
return '50% 50%';
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the video object position for a participant id.
|
||||
*
|
||||
* @param {Object} state - The redux state.
|
||||
* @returns {number} - Number of miliseconds for doing face detection.
|
||||
*/
|
||||
export function getDetectionInterval(state: Object) {
|
||||
const { faceCoordinatesSharing } = state['features/base/config'];
|
||||
|
||||
return Math.min(faceCoordinatesSharing?.captureInterval || SEND_IMAGE_INTERVAL_MS);
|
||||
}
|
||||
|
|
|
@ -5,36 +5,53 @@ import {
|
|||
CONFERENCE_WILL_LEAVE,
|
||||
getCurrentConference
|
||||
} from '../base/conference';
|
||||
import { JitsiConferenceEvents } from '../base/lib-jitsi-meet';
|
||||
import { getParticipantCount } from '../base/participants';
|
||||
import { MiddlewareRegistry } from '../base/redux';
|
||||
import { TRACK_UPDATED, TRACK_ADDED, TRACK_REMOVED } from '../base/tracks';
|
||||
import { VIRTUAL_BACKGROUND_TRACK_CHANGED } from '../virtual-background/actionTypes';
|
||||
|
||||
import { ADD_FACIAL_EXPRESSION } from './actionTypes';
|
||||
import { ADD_FACIAL_EXPRESSION, UPDATE_FACE_COORDINATES } from './actionTypes';
|
||||
import {
|
||||
addToFacialExpressionsBuffer,
|
||||
changeTrack,
|
||||
loadWorker,
|
||||
resetTrack,
|
||||
stopFacialRecognition,
|
||||
startFacialRecognition
|
||||
} from './actions';
|
||||
import { FACE_BOX_EVENT_TYPE } from './constants';
|
||||
import { sendFacialExpressionToParticipants, sendFacialExpressionToServer } from './functions';
|
||||
|
||||
|
||||
MiddlewareRegistry.register(({ dispatch, getState }) => next => action => {
|
||||
const { enableFacialRecognition } = getState()['features/base/config'];
|
||||
const { enableFacialRecognition, faceCoordinatesSharing } = getState()['features/base/config'];
|
||||
const isEnabled = enableFacialRecognition || faceCoordinatesSharing?.enabled;
|
||||
|
||||
if (!enableFacialRecognition) {
|
||||
return next(action);
|
||||
}
|
||||
if (action.type === CONFERENCE_JOINED) {
|
||||
if (isEnabled) {
|
||||
dispatch(loadWorker());
|
||||
}
|
||||
|
||||
// allow using remote face centering data when local face centering is not enabled
|
||||
action.conference.on(
|
||||
JitsiConferenceEvents.ENDPOINT_MESSAGE_RECEIVED,
|
||||
(participant, eventData) => {
|
||||
if (!participant || !eventData) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (eventData.type === FACE_BOX_EVENT_TYPE) {
|
||||
dispatch({
|
||||
type: UPDATE_FACE_COORDINATES,
|
||||
faceBox: eventData.faceBox,
|
||||
id: participant.getId()
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
return next(action);
|
||||
}
|
||||
if (!getCurrentConference(getState())) {
|
||||
|
||||
|
||||
if (!isEnabled) {
|
||||
return next(action);
|
||||
}
|
||||
|
||||
|
@ -44,51 +61,45 @@ MiddlewareRegistry.register(({ dispatch, getState }) => next => action => {
|
|||
|
||||
return next(action);
|
||||
}
|
||||
case TRACK_UPDATED: {
|
||||
const { videoType, type } = action.track.jitsiTrack;
|
||||
case TRACK_ADDED: {
|
||||
const { jitsiTrack: { isLocal, videoType } } = action.track;
|
||||
|
||||
if (videoType === 'camera') {
|
||||
const { muted, videoStarted } = action.track;
|
||||
|
||||
if (videoStarted === true) {
|
||||
dispatch(startFacialRecognition());
|
||||
}
|
||||
if (muted !== undefined) {
|
||||
if (muted) {
|
||||
dispatch(stopFacialRecognition());
|
||||
} else {
|
||||
dispatch(startFacialRecognition());
|
||||
type === 'presenter' && changeTrack(action.track);
|
||||
}
|
||||
}
|
||||
if (videoType === 'camera' && isLocal()) {
|
||||
// need to pass this since the track is not yet added in the store
|
||||
dispatch(startFacialRecognition(action.track));
|
||||
}
|
||||
|
||||
return next(action);
|
||||
}
|
||||
case TRACK_ADDED: {
|
||||
const { mediaType, videoType } = action.track;
|
||||
case TRACK_UPDATED: {
|
||||
const { jitsiTrack: { isLocal, videoType } } = action.track;
|
||||
|
||||
if (mediaType === 'presenter' && videoType === 'camera') {
|
||||
if (videoType !== 'camera' || !isLocal()) {
|
||||
return next(action);
|
||||
}
|
||||
|
||||
const { muted } = action.track;
|
||||
|
||||
if (muted !== undefined) {
|
||||
// addresses video mute state changes
|
||||
if (muted) {
|
||||
dispatch(stopFacialRecognition());
|
||||
} else {
|
||||
dispatch(startFacialRecognition());
|
||||
changeTrack(action.track);
|
||||
}
|
||||
}
|
||||
|
||||
return next(action);
|
||||
}
|
||||
case TRACK_REMOVED: {
|
||||
const { videoType } = action.track.jitsiTrack;
|
||||
const { jitsiTrack: { isLocal, videoType } } = action.track;
|
||||
|
||||
if ([ 'camera', 'desktop' ].includes(videoType)) {
|
||||
if (videoType === 'camera' && isLocal()) {
|
||||
dispatch(stopFacialRecognition());
|
||||
}
|
||||
|
||||
return next(action);
|
||||
}
|
||||
case VIRTUAL_BACKGROUND_TRACK_CHANGED: {
|
||||
dispatch(resetTrack());
|
||||
|
||||
return next(action);
|
||||
}
|
||||
case ADD_FACIAL_EXPRESSION: {
|
||||
const state = getState();
|
||||
const conference = getCurrentConference(state);
|
||||
|
|
|
@ -6,12 +6,13 @@ import {
|
|||
ADD_FACIAL_EXPRESSION,
|
||||
ADD_TO_FACIAL_EXPRESSIONS_BUFFER,
|
||||
CLEAR_FACIAL_EXPRESSIONS_BUFFER,
|
||||
SET_DETECTION_TIME_INTERVAL,
|
||||
START_FACIAL_RECOGNITION,
|
||||
STOP_FACIAL_RECOGNITION
|
||||
STOP_FACIAL_RECOGNITION,
|
||||
UPDATE_FACE_COORDINATES
|
||||
} from './actionTypes';
|
||||
|
||||
const defaultState = {
|
||||
faceBoxes: {},
|
||||
facialExpressions: {
|
||||
happy: 0,
|
||||
neutral: 0,
|
||||
|
@ -22,7 +23,6 @@ const defaultState = {
|
|||
sad: 0
|
||||
},
|
||||
facialExpressionsBuffer: [],
|
||||
detectionTimeInterval: -1,
|
||||
recognitionActive: false
|
||||
};
|
||||
|
||||
|
@ -45,25 +45,27 @@ ReducerRegistry.register('features/facial-recognition', (state = defaultState, a
|
|||
facialExpressionsBuffer: []
|
||||
};
|
||||
}
|
||||
case SET_DETECTION_TIME_INTERVAL: {
|
||||
return {
|
||||
...state,
|
||||
detectionTimeInterval: action.time
|
||||
};
|
||||
}
|
||||
case START_FACIAL_RECOGNITION: {
|
||||
return {
|
||||
...state,
|
||||
recognitionActive: true
|
||||
};
|
||||
}
|
||||
|
||||
case STOP_FACIAL_RECOGNITION: {
|
||||
return {
|
||||
...state,
|
||||
recognitionActive: false
|
||||
};
|
||||
}
|
||||
case UPDATE_FACE_COORDINATES: {
|
||||
return {
|
||||
...state,
|
||||
faceBoxes: {
|
||||
...state.faceBoxes,
|
||||
[action.id]: action.faceBox
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
return state;
|
||||
|
|
|
@ -23,7 +23,7 @@ import {
|
|||
getTrackByMediaTypeAndParticipant,
|
||||
updateLastTrackVideoMediaEvent
|
||||
} from '../../../base/tracks';
|
||||
import { getVideoObjectPosition } from '../../../face-centering/functions';
|
||||
import { getVideoObjectPosition } from '../../../facial-recognition/functions';
|
||||
import { hideGif, showGif } from '../../../gifs/actions';
|
||||
import { getGifDisplayMode, getGifForParticipant } from '../../../gifs/functions';
|
||||
import { PresenceLabel } from '../../../presence-status';
|
||||
|
|
|
@ -384,16 +384,6 @@ module.exports = (_env, argv) => {
|
|||
],
|
||||
performance: getPerformanceHints(perfHintOptions, 35 * 1024)
|
||||
}),
|
||||
Object.assign({}, config, {
|
||||
entry: {
|
||||
'face-centering-worker': './react/features/face-centering/faceCenteringWorker.js'
|
||||
},
|
||||
plugins: [
|
||||
...config.plugins,
|
||||
...getBundleAnalyzerPlugin(analyzeBundle, 'face-centering-worker')
|
||||
],
|
||||
performance: getPerformanceHints(perfHintOptions, 500 * 1024)
|
||||
}),
|
||||
Object.assign({}, config, {
|
||||
entry: {
|
||||
'facial-expressions-worker': './react/features/facial-recognition/facialExpressionsWorker.js'
|
||||
|
|
Loading…
Reference in New Issue