108 lines
2.6 KiB
JavaScript
108 lines
2.6 KiB
JavaScript
import * as blazeface from '@tensorflow-models/blazeface';
|
|
import { setWasmPaths } from '@tensorflow/tfjs-backend-wasm';
|
|
import * as tf from '@tensorflow/tfjs-core';
|
|
|
|
import { FACE_BOX_MESSAGE, DETECT_FACE_BOX } from './constants';
|
|
|
|
/**
|
|
* Indicates whether an init error occured.
|
|
*/
|
|
let initError = false;
|
|
|
|
/**
|
|
* The blazeface model.
|
|
*/
|
|
let model;
|
|
|
|
/**
|
|
* A flag that indicates whether the tensorflow backend is set or not.
|
|
*/
|
|
let backendSet = false;
|
|
|
|
/**
|
|
* Flag for indicating whether an init operation (e.g setting tf backend) is in progress.
|
|
*/
|
|
let initInProgress = false;
|
|
|
|
/**
|
|
* Callbacks queue for avoiding overlapping executions of face detection.
|
|
*/
|
|
const queue = [];
|
|
|
|
/**
|
|
* Contains the last valid face bounding box (passes threshold validation) which was sent to the main process.
|
|
*/
|
|
let lastValidFaceBox;
|
|
|
|
const detect = async message => {
|
|
const { baseUrl, image, isHorizontallyFlipped, threshold } = message.data;
|
|
|
|
if (initInProgress || initError) {
|
|
return;
|
|
}
|
|
|
|
if (!backendSet) {
|
|
initInProgress = true;
|
|
setWasmPaths(`${baseUrl}libs/`);
|
|
|
|
try {
|
|
await tf.setBackend('wasm');
|
|
} catch (err) {
|
|
initError = true;
|
|
|
|
return;
|
|
}
|
|
|
|
backendSet = true;
|
|
initInProgress = false;
|
|
}
|
|
|
|
// load face detection model
|
|
if (!model) {
|
|
try {
|
|
model = await blazeface.load();
|
|
} catch (err) {
|
|
initError = true;
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
tf.engine().startScope();
|
|
|
|
const imageTensor = tf.browser.fromPixels(image);
|
|
const detections = await model.estimateFaces(imageTensor, false, isHorizontallyFlipped, false);
|
|
|
|
tf.engine().endScope();
|
|
|
|
let faceBox;
|
|
|
|
if (detections.length) {
|
|
faceBox = {
|
|
// normalize to percentage based
|
|
left: Math.round(Math.min(...detections.map(d => d.topLeft[0])) * 100 / image.width),
|
|
right: Math.round(Math.max(...detections.map(d => d.bottomRight[0])) * 100 / image.width),
|
|
top: Math.round(Math.min(...detections.map(d => d.topLeft[1])) * 100 / image.height),
|
|
bottom: Math.round(Math.max(...detections.map(d => d.bottomRight[1])) * 100 / image.height)
|
|
};
|
|
|
|
if (lastValidFaceBox && Math.abs(lastValidFaceBox.left - faceBox.left) < threshold) {
|
|
return;
|
|
}
|
|
|
|
lastValidFaceBox = faceBox;
|
|
|
|
self.postMessage({
|
|
type: FACE_BOX_MESSAGE,
|
|
value: faceBox
|
|
});
|
|
}
|
|
};
|
|
|
|
onmessage = function(message) {
|
|
if (message.data.id === DETECT_FACE_BOX) {
|
|
queue.push(() => detect(message));
|
|
queue.shift()();
|
|
}
|
|
};
|