122 lines
2.9 KiB
JavaScript
122 lines
2.9 KiB
JavaScript
// @flow
|
|
import './faceApiPatch';
|
|
import * as faceapi from '@vladmandic/face-api';
|
|
|
|
import {
|
|
CLEAR_TIMEOUT,
|
|
CPU_TIME_INTERVAL,
|
|
FACIAL_EXPRESSION_MESSAGE,
|
|
INIT_WORKER,
|
|
SET_TIMEOUT,
|
|
INTERVAL_MESSAGE,
|
|
WEBGL_TIME_INTERVAL
|
|
} from './constants';
|
|
|
|
/**
|
|
* A flag that indicates whether the tensorflow models were loaded or not.
|
|
*/
|
|
let modelsLoaded = false;
|
|
|
|
/**
|
|
* The url where the models for the facial detection of expressions are located.
|
|
*/
|
|
let modelsURL;
|
|
|
|
/**
|
|
* A flag that indicates whether the tensorflow backend is set or not.
|
|
*/
|
|
let backendSet = false;
|
|
|
|
/**
|
|
* A timer variable for set interval.
|
|
*/
|
|
let timer;
|
|
|
|
/**
|
|
* The duration of the set timeout.
|
|
*/
|
|
let timeoutDuration = -1;
|
|
|
|
/**
|
|
* A patch for having window object in the worker.
|
|
*/
|
|
const window = {
|
|
screen: {
|
|
width: 1280,
|
|
height: 720
|
|
}
|
|
};
|
|
|
|
onmessage = async function(message) {
|
|
switch (message.data.type) {
|
|
case INIT_WORKER : {
|
|
modelsURL = message.data.url;
|
|
if (message.data.windowScreenSize) {
|
|
window.screen = message.data.windowScreenSize;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SET_TIMEOUT : {
|
|
if (!message.data.imageBitmap || !modelsURL) {
|
|
self.postMessage({
|
|
type: FACIAL_EXPRESSION_MESSAGE,
|
|
value: null
|
|
});
|
|
}
|
|
|
|
// the models are loaded
|
|
if (!modelsLoaded) {
|
|
await faceapi.loadTinyFaceDetectorModel(modelsURL);
|
|
await faceapi.loadFaceExpressionModel(modelsURL);
|
|
modelsLoaded = true;
|
|
}
|
|
faceapi.tf.engine().startScope();
|
|
const tensor = faceapi.tf.browser.fromPixels(message.data.imageBitmap);
|
|
const detections = await faceapi.detectSingleFace(
|
|
tensor,
|
|
new faceapi.TinyFaceDetectorOptions()
|
|
).withFaceExpressions();
|
|
|
|
// The backend is set
|
|
if (!backendSet) {
|
|
const backend = faceapi.tf.getBackend();
|
|
|
|
if (backend) {
|
|
if (backend === 'webgl') {
|
|
timeoutDuration = WEBGL_TIME_INTERVAL;
|
|
} else if (backend === 'cpu') {
|
|
timeoutDuration = CPU_TIME_INTERVAL;
|
|
}
|
|
self.postMessage({
|
|
type: INTERVAL_MESSAGE,
|
|
value: timeoutDuration
|
|
});
|
|
backendSet = true;
|
|
}
|
|
}
|
|
faceapi.tf.engine().endScope();
|
|
let facialExpression;
|
|
|
|
if (detections) {
|
|
facialExpression = detections.expressions.asSortedArray()[0].expression;
|
|
}
|
|
timer = setTimeout(() => {
|
|
self.postMessage({
|
|
type: FACIAL_EXPRESSION_MESSAGE,
|
|
value: facialExpression
|
|
});
|
|
}, timeoutDuration);
|
|
break;
|
|
}
|
|
|
|
case CLEAR_TIMEOUT: {
|
|
if (timer) {
|
|
clearTimeout(timer);
|
|
timer = null;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
};
|