jiti-meet/react/features/face-landmarks/faceLandmarksWorker.ts

182 lines
4.3 KiB
TypeScript

import { setWasmPaths } from '@tensorflow/tfjs-backend-wasm';
import { Human, Config, FaceResult } from '@vladmandic/human';
import { DETECTION_TYPES, DETECT_FACE, INIT_WORKER, FACE_EXPRESSIONS_NAMING_MAPPING } from './constants';
type Detection = {
detections: Array<FaceResult>,
threshold?: number
};
type DetectInput = {
image: ImageBitmap | ImageData,
threshold: number
};
type FaceBox = {
left: number,
right: number,
width?: number
};
type InitInput = {
baseUrl: string,
detectionTypes: string[]
}
/**
* An object that is used for using human.
*/
let human: Human;
/**
* Detection types to be applied.
*/
let faceDetectionTypes: string[] = [];
/**
* Flag for indicating whether a face detection flow is in progress or not.
*/
let detectionInProgress = false;
/**
* Contains the last valid face bounding box (passes threshold validation) which was sent to the main process.
*/
let lastValidFaceBox: FaceBox;
/**
* Configuration for human.
*/
const config: Partial<Config> = {
backend: 'humangl',
async: true,
warmup: 'none',
cacheModels: true,
cacheSensitivity: 0,
debug: false,
deallocate: true,
filter: { enabled: false },
face: {
enabled: true,
detector: {
enabled: true,
rotation: false
},
mesh: { enabled: false },
iris: { enabled: false },
emotion: { enabled: false },
description: { enabled: false }
},
hand: { enabled: false },
gesture: { enabled: false },
body: { enabled: false },
segmentation: { enabled: false }
};
const detectFaceBox = async ({ detections, threshold }: Detection) => {
if (!detections.length) {
return null;
}
const faceBox: FaceBox = {
// normalize to percentage based
left: Math.round(Math.min(...detections.map(d => d.boxRaw[0])) * 100),
right: Math.round(Math.max(...detections.map(d => d.boxRaw[0] + d.boxRaw[2])) * 100)
};
faceBox.width = Math.round(faceBox.right - faceBox.left);
if (lastValidFaceBox && threshold && Math.abs(lastValidFaceBox.left - faceBox.left) < threshold) {
return null;
}
lastValidFaceBox = faceBox;
return faceBox;
};
const detectFaceExpression = async ({ detections }: Detection) =>
detections[0]?.emotion && FACE_EXPRESSIONS_NAMING_MAPPING[detections[0]?.emotion[0].emotion];
const detect = async ({ image, threshold } : DetectInput) => {
let detections;
let faceExpression;
let faceBox;
detectionInProgress = true;
const imageTensor = human.tf.browser.fromPixels(image);
if (faceDetectionTypes.includes(DETECTION_TYPES.FACE_EXPRESSIONS)) {
const { face } = await human.detect(imageTensor, config);
detections = face;
faceExpression = await detectFaceExpression({ detections });
}
if (faceDetectionTypes.includes(DETECTION_TYPES.FACE_BOX)) {
if (!detections) {
const { face } = await human.detect(imageTensor, config);
detections = face;
}
faceBox = await detectFaceBox({
detections,
threshold
});
}
if (faceBox || faceExpression) {
self.postMessage({
faceBox,
faceExpression
});
}
detectionInProgress = false;
};
const init = async ({ baseUrl, detectionTypes }: InitInput) => {
faceDetectionTypes = detectionTypes;
if (!human) {
config.modelBasePath = baseUrl;
if (!self.OffscreenCanvas) {
config.backend = 'wasm';
config.wasmPath = baseUrl;
setWasmPaths(baseUrl);
}
if (detectionTypes.includes(DETECTION_TYPES.FACE_EXPRESSIONS) && config.face) {
config.face.emotion = { enabled: true };
}
const initialHuman = new Human(config);
try {
await initialHuman.load();
} catch (err) {
console.error(err);
}
human = initialHuman;
}
};
onmessage = function(message: MessageEvent<any>) {
switch (message.data.type) {
case DETECT_FACE: {
if (!human || detectionInProgress) {
return;
}
detect(message.data);
break;
}
case INIT_WORKER: {
init(message.data);
break;
}
}
};