jiti-meet/react/features/facial-recognition/facialExpressionsWorker.js

122 lines
2.9 KiB
JavaScript

// @flow
import './faceApiPatch';
import * as faceapi from '@vladmandic/face-api';
import {
CLEAR_TIMEOUT,
CPU_TIME_INTERVAL,
FACIAL_EXPRESSION_MESSAGE,
INIT_WORKER,
SET_TIMEOUT,
INTERVAL_MESSAGE,
WEBGL_TIME_INTERVAL
} from './constants';
/**
* A flag that indicates whether the tensorflow models were loaded or not.
*/
let modelsLoaded = false;
/**
* The url where the models for the facial detection of expressions are located.
*/
let modelsURL;
/**
* A flag that indicates whether the tensorflow backend is set or not.
*/
let backendSet = false;
/**
* A timer variable for set interval.
*/
let timer;
/**
* The duration of the set timeout.
*/
let timeoutDuration = -1;
/**
* A patch for having window object in the worker.
*/
const window = {
screen: {
width: 1280,
height: 720
}
};
onmessage = async function(message) {
switch (message.data.type) {
case INIT_WORKER : {
modelsURL = message.data.url;
if (message.data.windowScreenSize) {
window.screen = message.data.windowScreenSize;
}
break;
}
case SET_TIMEOUT : {
if (!message.data.imageData || !modelsURL) {
self.postMessage({
type: FACIAL_EXPRESSION_MESSAGE,
value: null
});
}
// the models are loaded
if (!modelsLoaded) {
await faceapi.loadTinyFaceDetectorModel(modelsURL);
await faceapi.loadFaceExpressionModel(modelsURL);
modelsLoaded = true;
}
faceapi.tf.engine().startScope();
const tensor = faceapi.tf.browser.fromPixels(message.data.imageData);
const detections = await faceapi.detectSingleFace(
tensor,
new faceapi.TinyFaceDetectorOptions()
).withFaceExpressions();
// The backend is set
if (!backendSet) {
const backend = faceapi.tf.getBackend();
if (backend) {
if (backend === 'webgl') {
timeoutDuration = WEBGL_TIME_INTERVAL;
} else if (backend === 'cpu') {
timeoutDuration = CPU_TIME_INTERVAL;
}
self.postMessage({
type: INTERVAL_MESSAGE,
value: timeoutDuration
});
backendSet = true;
}
}
faceapi.tf.engine().endScope();
let facialExpression;
if (detections) {
facialExpression = detections.expressions.asSortedArray()[0].expression;
}
timer = setTimeout(() => {
self.postMessage({
type: FACIAL_EXPRESSION_MESSAGE,
value: facialExpression
});
}, timeoutDuration);
break;
}
case CLEAR_TIMEOUT: {
if (timer) {
clearTimeout(timer);
timer = null;
}
break;
}
}
};