307 lines
10 KiB
TypeScript
307 lines
10 KiB
TypeScript
import 'image-capture';
|
|
import './createImageBitmap';
|
|
import { IStore } from '../app/types';
|
|
import { getLocalVideoTrack } from '../base/tracks/functions';
|
|
import { getBaseUrl } from '../base/util/helpers';
|
|
|
|
import {
|
|
addFaceExpression,
|
|
clearFaceExpressionBuffer,
|
|
faceLandmarkDetectionStopped,
|
|
newFaceBox
|
|
} from './actions';
|
|
import {
|
|
DETECTION_TYPES,
|
|
DETECT_FACE,
|
|
FACE_LANDMARK_DETECTION_ERROR_THRESHOLD,
|
|
INIT_WORKER,
|
|
WEBHOOK_SEND_TIME_INTERVAL
|
|
} from './constants';
|
|
import {
|
|
getDetectionInterval,
|
|
getFaceExpressionDuration,
|
|
sendFaceExpressionsWebhook
|
|
} from './functions';
|
|
import logger from './logger';
|
|
declare const APP: any;
|
|
|
|
/**
|
|
* Class for face language detection.
|
|
*/
|
|
class FaceLandmarksDetector {
|
|
private static instance: FaceLandmarksDetector;
|
|
private initialized = false;
|
|
private imageCapture: ImageCapture | null = null;
|
|
private worker: Worker | null = null;
|
|
private lastFaceExpression: string | null = null;
|
|
private lastFaceExpressionTimestamp: number | null = null;
|
|
private duplicateConsecutiveExpressions = 0;
|
|
private webhookSendInterval: number | null = null;
|
|
private detectionInterval: number | null = null;
|
|
private recognitionActive = false;
|
|
private canvas?: HTMLCanvasElement;
|
|
private context?: CanvasRenderingContext2D | null;
|
|
private errorCount = 0;
|
|
|
|
/**
|
|
* Constructor for class, checks if the environment supports OffscreenCanvas.
|
|
*/
|
|
private constructor() {
|
|
if (typeof OffscreenCanvas === 'undefined') {
|
|
this.canvas = document.createElement('canvas');
|
|
this.context = this.canvas.getContext('2d');
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Function for retrieving the FaceLandmarksDetector instance.
|
|
*
|
|
* @returns {FaceLandmarksDetector} - FaceLandmarksDetector instance.
|
|
*/
|
|
public static getInstance(): FaceLandmarksDetector {
|
|
if (!FaceLandmarksDetector.instance) {
|
|
FaceLandmarksDetector.instance = new FaceLandmarksDetector();
|
|
}
|
|
|
|
return FaceLandmarksDetector.instance;
|
|
}
|
|
|
|
/**
|
|
* Returns if the detected environment is initialized.
|
|
*
|
|
* @returns {boolean}
|
|
*/
|
|
isInitialized(): boolean {
|
|
return this.initialized;
|
|
}
|
|
|
|
/**
|
|
* Initialization function: the worker is loaded and initialized, and then if possible the detection stats.
|
|
*
|
|
* @param {IStore} store - Redux store with dispatch and getState methods.
|
|
* @returns {void}
|
|
*/
|
|
init({ dispatch, getState }: IStore) {
|
|
if (this.isInitialized()) {
|
|
logger.info('Worker has already been initialized');
|
|
|
|
return;
|
|
}
|
|
|
|
if (navigator.product === 'ReactNative') {
|
|
logger.warn('Unsupported environment for face detection');
|
|
|
|
return;
|
|
}
|
|
|
|
const baseUrl = `${getBaseUrl()}libs/`;
|
|
let workerUrl = `${baseUrl}face-landmarks-worker.min.js`;
|
|
|
|
// @ts-ignore
|
|
const workerBlob = new Blob([ `importScripts("${workerUrl}");` ], { type: 'application/javascript' });
|
|
|
|
// @ts-ignore
|
|
workerUrl = window.URL.createObjectURL(workerBlob);
|
|
this.worker = new Worker(workerUrl, { name: 'Face Recognition Worker' });
|
|
this.worker.onmessage = ({ data }: MessageEvent<any>) => {
|
|
const { faceExpression, faceBox } = data;
|
|
|
|
if (faceExpression) {
|
|
if (faceExpression === this.lastFaceExpression) {
|
|
this.duplicateConsecutiveExpressions++;
|
|
} else {
|
|
if (this.lastFaceExpression && this.lastFaceExpressionTimestamp) {
|
|
dispatch(addFaceExpression(
|
|
this.lastFaceExpression,
|
|
getFaceExpressionDuration(getState(), this.duplicateConsecutiveExpressions + 1),
|
|
this.lastFaceExpressionTimestamp
|
|
));
|
|
}
|
|
this.lastFaceExpression = faceExpression;
|
|
this.lastFaceExpressionTimestamp = Date.now();
|
|
this.duplicateConsecutiveExpressions = 0;
|
|
}
|
|
}
|
|
|
|
if (faceBox) {
|
|
dispatch(newFaceBox(faceBox));
|
|
}
|
|
|
|
APP.API.notifyFaceLandmarkDetected(faceBox, faceExpression);
|
|
};
|
|
|
|
const { faceLandmarks } = getState()['features/base/config'];
|
|
const detectionTypes = [
|
|
faceLandmarks?.enableFaceCentering && DETECTION_TYPES.FACE_BOX,
|
|
faceLandmarks?.enableFaceExpressionsDetection && DETECTION_TYPES.FACE_EXPRESSIONS
|
|
].filter(Boolean);
|
|
|
|
this.worker.postMessage({
|
|
type: INIT_WORKER,
|
|
baseUrl,
|
|
detectionTypes
|
|
});
|
|
this.initialized = true;
|
|
|
|
this.startDetection({
|
|
dispatch,
|
|
getState
|
|
});
|
|
}
|
|
|
|
/**
|
|
* The function which starts the detection process.
|
|
*
|
|
* @param {IStore} store - Redux store with dispatch and getState methods.
|
|
* @param {any} track - Track from middleware; can be undefined.
|
|
* @returns {void}
|
|
*/
|
|
startDetection({ dispatch, getState }: IStore, track?: any) {
|
|
if (!this.isInitialized()) {
|
|
logger.info('Worker has not been initialized');
|
|
|
|
return;
|
|
}
|
|
|
|
if (this.recognitionActive) {
|
|
logger.log('Face detection already active.');
|
|
|
|
return;
|
|
}
|
|
const state = getState();
|
|
const localVideoTrack = track || getLocalVideoTrack(state['features/base/tracks']);
|
|
|
|
if (localVideoTrack === undefined) {
|
|
logger.warn('Face landmarks detection is disabled due to missing local track.');
|
|
|
|
return;
|
|
}
|
|
const stream = localVideoTrack.jitsiTrack.getOriginalStream();
|
|
const firstVideoTrack = stream.getVideoTracks()[0];
|
|
|
|
this.imageCapture = new ImageCapture(firstVideoTrack);
|
|
this.recognitionActive = true;
|
|
logger.log('Start face detection');
|
|
|
|
const { faceLandmarks } = state['features/base/config'];
|
|
|
|
this.detectionInterval = window.setInterval(() => {
|
|
|
|
if (this.worker && this.imageCapture) {
|
|
this.sendDataToWorker(
|
|
faceLandmarks?.faceCenteringThreshold
|
|
).then(status => {
|
|
if (status) {
|
|
this.errorCount = 0;
|
|
} else if (++this.errorCount > FACE_LANDMARK_DETECTION_ERROR_THRESHOLD) {
|
|
/* this prevents the detection from stopping immediately after occurring an error
|
|
* sometimes due to the small detection interval when starting the detection some errors
|
|
* might occur due to the track not being ready
|
|
*/
|
|
this.stopDetection({
|
|
dispatch,
|
|
getState
|
|
});
|
|
}
|
|
});
|
|
}
|
|
}, getDetectionInterval(state));
|
|
|
|
const { webhookProxyUrl } = state['features/base/config'];
|
|
|
|
if (faceLandmarks?.enableFaceExpressionsDetection && webhookProxyUrl) {
|
|
this.webhookSendInterval = window.setInterval(async () => {
|
|
const result = await sendFaceExpressionsWebhook(getState());
|
|
|
|
if (result) {
|
|
dispatch(clearFaceExpressionBuffer());
|
|
}
|
|
}, WEBHOOK_SEND_TIME_INTERVAL);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The function which stops the detection process.
|
|
*
|
|
* @param {IStore} store - Redux store with dispatch and getState methods.
|
|
* @returns {void}
|
|
*/
|
|
stopDetection({ dispatch, getState }: IStore) {
|
|
if (!this.recognitionActive || !this.isInitialized()) {
|
|
return;
|
|
}
|
|
|
|
if (this.lastFaceExpression && this.lastFaceExpressionTimestamp) {
|
|
dispatch(
|
|
addFaceExpression(
|
|
this.lastFaceExpression,
|
|
getFaceExpressionDuration(getState(), this.duplicateConsecutiveExpressions + 1),
|
|
this.lastFaceExpressionTimestamp
|
|
)
|
|
);
|
|
this.duplicateConsecutiveExpressions = 0;
|
|
this.lastFaceExpression = null;
|
|
this.lastFaceExpressionTimestamp = null;
|
|
}
|
|
|
|
this.webhookSendInterval && window.clearInterval(this.webhookSendInterval);
|
|
this.detectionInterval && window.clearInterval(this.detectionInterval);
|
|
this.webhookSendInterval = null;
|
|
this.detectionInterval = null;
|
|
this.imageCapture = null;
|
|
this.recognitionActive = false;
|
|
dispatch(faceLandmarkDetectionStopped(Date.now()));
|
|
logger.log('Stop face detection');
|
|
}
|
|
|
|
/**
|
|
* Sends the image data a canvas from the track in the image capture to the face detection worker.
|
|
*
|
|
* @param {number} faceCenteringThreshold - Movement threshold as percentage for sharing face coordinates.
|
|
* @returns {Promise<boolean>} - True if sent, false otherwise.
|
|
*/
|
|
private async sendDataToWorker(faceCenteringThreshold = 10): Promise<boolean> {
|
|
if (!this.imageCapture
|
|
|| !this.worker
|
|
|| !this.imageCapture?.track
|
|
|| this.imageCapture?.track.readyState !== 'live') {
|
|
logger.log('Environment not ready! Could not send data to worker');
|
|
|
|
return false;
|
|
}
|
|
|
|
let imageBitmap;
|
|
let image;
|
|
|
|
try {
|
|
imageBitmap = await this.imageCapture.grabFrame();
|
|
} catch (err) {
|
|
logger.log('Could not send data to worker');
|
|
|
|
return false;
|
|
}
|
|
|
|
if (typeof OffscreenCanvas === 'undefined' && this.canvas && this.context) {
|
|
this.canvas.width = imageBitmap.width;
|
|
this.canvas.height = imageBitmap.height;
|
|
this.context.drawImage(imageBitmap, 0, 0);
|
|
image = this.context.getImageData(0, 0, imageBitmap.width, imageBitmap.height);
|
|
} else {
|
|
image = imageBitmap;
|
|
}
|
|
|
|
this.worker.postMessage({
|
|
type: DETECT_FACE,
|
|
image,
|
|
threshold: faceCenteringThreshold
|
|
});
|
|
|
|
imageBitmap.close();
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
export default FaceLandmarksDetector.getInstance();
|
|
|