jiti-meet/react/features/vad-reporter/TrackVADEmitter.js

259 lines
8.3 KiB
JavaScript

// @flow
import { createRnnoiseProcessorPromise, getSampleLength } from '../rnnoise/';
import EventEmitter from 'events';
import JitsiMeetJS from '../base/lib-jitsi-meet';
import logger from './logger';
import { VAD_SCORE_PUBLISHED } from './VADEvents';
/**
* The structure used by TrackVADEmitter to relay a score
*/
export type VADScore = {
/**
* Device ID associated with the VAD score
*/
deviceId: string,
/**
* The PCM score from 0 - 1 i.e. 0.60
*/
score: number,
/**
* Epoch time at which PCM was recorded
*/
timestamp: number
};
/**
* Connects an audio JitsiLocalTrack to a RnnoiseProcessor using WebAudio ScriptProcessorNode.
* Once an object is created audio from the local track flows through the ScriptProcessorNode as raw PCM.
* The PCM is processed by the rnnoise module and a VAD (voice activity detection) score is obtained, the
* score is published to consumers via an EventEmitter.
* After work is done with this service the destroy method needs to be called for a proper cleanup.
*/
export default class TrackVADEmitter extends EventEmitter {
/**
* The AudioContext instance.
*/
_audioContext: AudioContext;
/**
* The MediaStreamAudioSourceNode instance.
*/
_audioSource: MediaStreamAudioSourceNode;
/**
* The ScriptProcessorNode instance.
*/
_audioProcessingNode: ScriptProcessorNode;
/**
* Buffer to hold residue PCM resulting after a ScriptProcessorNode callback
*/
_bufferResidue: Float32Array;
/**
* State flag, check if the instance was destroyed
*/
_destroyed: boolean = false;
/**
* The JitsiLocalTrack instance.
*/
_localTrack: Object;
/**
* Device ID of the target microphone.
*/
_micDeviceId: string;
/**
* Callback function that will be called by the ScriptProcessNode with raw PCM data, depending on the set sample
* rate.
*/
_onAudioProcess: (audioEvent: Object) => void;
/**
* Sample rate of the ScriptProcessorNode.
*/
_procNodeSampleRate: number;
/**
* Rnnoise adapter that allows us to calculate VAD score for PCM samples
*/
_rnnoiseProcessor: Object;
/**
* PCM Sample size expected by the RnnoiseProcessor instance.
*/
_rnnoiseSampleSize: number;
/**
* Constructor.
*
* @param {number} procNodeSampleRate - Sample rate of the ScriptProcessorNode. Possible values 256, 512, 1024,
* 2048, 4096, 8192, 16384. Passing other values will default to closes neighbor.
* @param {Object} rnnoiseProcessor - Rnnoise adapter that allows us to calculate VAD score
* for PCM samples.
* @param {Object} jitsiLocalTrack - JitsiLocalTrack corresponding to micDeviceId.
*/
constructor(procNodeSampleRate: number, rnnoiseProcessor: Object, jitsiLocalTrack: Object) {
super();
this._procNodeSampleRate = procNodeSampleRate;
this._rnnoiseProcessor = rnnoiseProcessor;
this._localTrack = jitsiLocalTrack;
this._micDeviceId = jitsiLocalTrack.getDeviceId();
this._bufferResidue = new Float32Array([]);
this._audioContext = new AudioContext();
this._rnnoiseSampleSize = getSampleLength();
this._onAudioProcess = this._onAudioProcess.bind(this);
this._initializeAudioContext();
this._connectAudioGraph();
logger.log(`Constructed VAD emitter for device: ${this._micDeviceId}`);
}
/**
* Factory method that sets up all the necessary components for the creation of the TrackVADEmitter.
*
* @param {string} micDeviceId - Target microphone device id.
* @param {number} procNodeSampleRate - Sample rate of the proc node.
* @returns {Promise<TrackVADEmitter>} - Promise resolving in a new instance of TrackVADEmitter.
*/
static async create(micDeviceId: string, procNodeSampleRate: number) {
let rnnoiseProcessor = null;
let localTrack = null;
try {
logger.log(`Initializing TrackVADEmitter for device: ${micDeviceId}`);
rnnoiseProcessor = await createRnnoiseProcessorPromise();
localTrack = await JitsiMeetJS.createLocalTracks({
devices: [ 'audio' ],
micDeviceId
});
// We only expect one audio track when specifying a device id.
if (!localTrack[0]) {
throw new Error(`Failed to create jitsi local track for device id: ${micDeviceId}`);
}
return new TrackVADEmitter(procNodeSampleRate, rnnoiseProcessor, localTrack[0]);
} catch (error) {
logger.error(`Failed to create TrackVADEmitter for ${micDeviceId} with error: ${error}`);
if (rnnoiseProcessor) {
rnnoiseProcessor.destroy();
}
if (localTrack) {
localTrack.stopStream();
}
throw error;
}
}
/**
* Sets up the audio graph in the AudioContext.
*
* @returns {Promise<void>}
*/
_initializeAudioContext() {
this._audioSource = this._audioContext.createMediaStreamSource(this._localTrack.stream);
// TODO AudioProcessingNode is deprecated check and replace with alternative.
// We don't need stereo for determining the VAD score so we create a single chanel processing node.
this._audioProcessingNode = this._audioContext.createScriptProcessor(this._procNodeSampleRate, 1, 1);
this._audioProcessingNode.onaudioprocess = this._onAudioProcess;
}
/**
* ScriptProcessorNode callback, the input parameters contains the PCM audio that is then sent to rnnoise.
* Rnnoise only accepts PCM samples of 480 bytes whereas the webaudio processor node can't sample at a multiple
* of 480 thus after each _onAudioProcess callback there will remain and PCM buffer residue equal
* to _procNodeSampleRate / 480 which will be added to the next sample buffer and so on.
*
* @param {AudioProcessingEvent} audioEvent - Audio event.
* @returns {void}
*/
_onAudioProcess(audioEvent: Object) {
// Prepend the residue PCM buffer from the previous process callback.
const inData = audioEvent.inputBuffer.getChannelData(0);
const completeInData = [ ...this._bufferResidue, ...inData ];
const sampleTimestamp = Date.now();
let i = 0;
for (; i + this._rnnoiseSampleSize < completeInData.length; i += this._rnnoiseSampleSize) {
const pcmSample = completeInData.slice(i, i + this._rnnoiseSampleSize);
const vadScore = this._rnnoiseProcessor.calculateAudioFrameVAD(pcmSample);
this.emit(VAD_SCORE_PUBLISHED, {
timestamp: sampleTimestamp,
score: vadScore,
deviceId: this._micDeviceId
});
}
this._bufferResidue = completeInData.slice(i, completeInData.length);
}
/**
* Connects the nodes in the AudioContext to start the flow of audio data.
*
* @returns {void}
*/
_connectAudioGraph() {
this._audioSource.connect(this._audioProcessingNode);
this._audioProcessingNode.connect(this._audioContext.destination);
}
/**
* Disconnects the nodes in the AudioContext.
*
* @returns {void}
*/
_disconnectAudioGraph() {
// Even thought we disconnect the processing node it seems that some callbacks remain queued,
// resulting in calls with and uninitialized context.
// eslint-disable-next-line no-empty-function
this._audioProcessingNode.onaudioprocess = () => {};
this._audioProcessingNode.disconnect();
this._audioSource.disconnect();
}
/**
* Cleanup potentially acquired resources.
*
* @returns {void}
*/
_cleanupResources() {
logger.debug(`Cleaning up resources for device ${this._micDeviceId}!`);
this._disconnectAudioGraph();
this._localTrack.stopStream();
this._rnnoiseProcessor.destroy();
}
/**
* Destroy TrackVADEmitter instance (release resources and stop callbacks).
*
* @returns {void}
*/
destroy() {
if (this._destroyed) {
return;
}
logger.log(`Destroying TrackVADEmitter for mic: ${this._micDeviceId}`);
this._cleanupResources();
this._destroyed = true;
}
}