kicad/eeschema/sch_screen.cpp

1611 lines
44 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2008 Wayne Stambaugh <stambaughw@gmail.com>
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file sch_screen.cpp
* @brief Implementation of SCH_SCREEN and SCH_SCREENS classes.
*/
#include <common.h>
#include <eda_rect.h>
#include <fctsys.h>
#include <gr_text.h>
#include <id.h>
#include <kicad_string.h>
#include <kiway.h>
#include <pgm_base.h>
#include <plotter.h>
#include <project.h>
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
#include <reporter.h>
#include <sch_draw_panel.h>
2018-01-30 10:49:51 +00:00
#include <sch_edit_frame.h>
#include <sch_item.h>
#include <class_library.h>
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
#include <class_libentry.h>
#include <connection_graph.h>
#include <lib_pin.h>
#include <netlist_object.h>
#include <sch_component.h>
#include <sch_junction.h>
#include <sch_line.h>
#include <sch_marker.h>
#include <sch_sheet.h>
#include <sch_text.h>
#include <symbol_lib_table.h>
2018-09-03 13:58:47 +00:00
#include <tool/common_tools.h>
#include <thread>
#include <algorithm>
#include <future>
// TODO(JE) Debugging only
#include <profile.h>
#define EESCHEMA_FILE_STAMP "EESchema"
#define ZOOM_FACTOR( x ) ( x * IU_PER_MILS )
/* Default zoom values. Limited to these values to keep a decent size
* to menus
*/
static double SchematicZoomList[] =
2009-02-06 11:45:35 +00:00
{
ZOOM_FACTOR( 0.5 ),
ZOOM_FACTOR( 0.7 ),
ZOOM_FACTOR( 1.0 ),
ZOOM_FACTOR( 1.5 ),
ZOOM_FACTOR( 2.0 ),
ZOOM_FACTOR( 3.0 ),
ZOOM_FACTOR( 4.0 ),
ZOOM_FACTOR( 6.0 ),
ZOOM_FACTOR( 8.0 ),
ZOOM_FACTOR( 11.0 ),
ZOOM_FACTOR( 13.0 ),
ZOOM_FACTOR( 16.0 ),
ZOOM_FACTOR( 20.0 ),
ZOOM_FACTOR( 26.0 ),
ZOOM_FACTOR( 32.0 ),
ZOOM_FACTOR( 48.0 ),
ZOOM_FACTOR( 64.0 ),
ZOOM_FACTOR( 80.0 ),
ZOOM_FACTOR( 128.0 )
2009-02-06 11:45:35 +00:00
};
/* Default grid sizes for the schematic editor.
2015-07-20 14:11:34 +00:00
* Do NOT add others values (mainly grid values in mm), because they
* can break the schematic: Because wires and pins are considered as
* connected when the are to the same coordinate we cannot mix
* coordinates in mils (internal units) and mm (that cannot exactly
* converted in mils in many cases). In fact schematic must only use
* 50 and 25 mils to place labels, wires and components others values
* are useful only for graphic items (mainly in library editor) so use
* integer values in mils only. The 100 mil grid is added to help
* conform to the KiCad Library Convention. Which states: "Using a
* 100mil grid, pin ends and origin must lie on grid nodes IEC-60617"
*/
static GRID_TYPE SchematicGridList[] = {
{ ID_POPUP_GRID_LEVEL_100, wxRealPoint( Mils2iu( 100 ), Mils2iu( 100 ) ) },
{ ID_POPUP_GRID_LEVEL_50, wxRealPoint( Mils2iu( 50 ), Mils2iu( 50 ) ) },
{ ID_POPUP_GRID_LEVEL_25, wxRealPoint( Mils2iu( 25 ), Mils2iu( 25 ) ) },
{ ID_POPUP_GRID_LEVEL_10, wxRealPoint( Mils2iu( 10 ), Mils2iu( 10 ) ) },
{ ID_POPUP_GRID_LEVEL_5, wxRealPoint( Mils2iu( 5 ), Mils2iu( 5 ) ) },
{ ID_POPUP_GRID_LEVEL_2, wxRealPoint( Mils2iu( 2 ), Mils2iu( 2 ) ) },
{ ID_POPUP_GRID_LEVEL_1, wxRealPoint( Mils2iu( 1 ), Mils2iu( 1 ) ) },
};
SCH_SCREEN::SCH_SCREEN( KIWAY* aKiway ) :
BASE_SCREEN( SCH_SCREEN_T ),
KIWAY_HOLDER( aKiway, KIWAY_HOLDER::HOLDER_TYPE::SCREEN ),
m_paper( wxT( "A4" ) )
{
2015-02-28 20:50:35 +00:00
m_modification_sync = 0;
SetZoom( 32 );
for( unsigned zoom : SchematicZoomList )
m_ZoomList.push_back( zoom );
for( GRID_TYPE grid : SchematicGridList )
AddGrid( grid );
// Set the default grid size, now that the grid list is populated
SetGrid( wxRealPoint( Mils2iu( 50 ), Mils2iu( 50 ) ) );
m_refCount = 0;
// Suitable for schematic only. For libedit and viewlib, must be set to true
m_Center = false;
InitDataPoints( m_paper.GetSizeIU() );
}
2007-09-01 12:00:30 +00:00
SCH_SCREEN::~SCH_SCREEN()
{
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
clearLibSymbols();
ClearUndoRedoList();
FreeDrawList();
}
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
void SCH_SCREEN::clearLibSymbols()
{
for( auto libSymbol : m_libSymbols )
delete libSymbol.second;
m_libSymbols.clear();
}
void SCH_SCREEN::IncRefCount()
{
m_refCount++;
}
void SCH_SCREEN::DecRefCount()
{
wxCHECK_RET( m_refCount != 0,
wxT( "Screen reference count already zero. Bad programmer!" ) );
m_refCount--;
}
bool SCH_SCREEN::HasItems( KICAD_T aItemType ) const
{
EE_RTREE::EE_TYPE sheets = const_cast<EE_RTREE&>( m_rtree ).OfType( aItemType );
return sheets.begin() != sheets.end();
}
void SCH_SCREEN::Append( SCH_ITEM* aItem )
{
if( aItem->Type() != SCH_SHEET_PIN_T && aItem->Type() != SCH_FIELD_T )
{
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
if( aItem->Type() == SCH_COMPONENT_T )
{
SCH_COMPONENT* symbol = static_cast<SCH_COMPONENT*>( aItem );
if( symbol->GetPartRef() )
{
auto it = m_libSymbols.find( symbol->GetSchSymbolLibraryName() );
if( it == m_libSymbols.end() )
{
m_libSymbols[symbol->GetSchSymbolLibraryName()] =
new LIB_PART( *symbol->GetPartRef() );
}
else
{
// The original library symbol may have changed since the last time
// it was added to the schematic. If it has changed, then a new name
// must be created for the library symbol list to prevent all of the
// other schematic symbols referencing that library symbol from changing.
LIB_PART* foundSymbol = it->second;
if( *foundSymbol != *symbol->GetPartRef() )
{
int cnt = 1;
wxString newName;
newName.Printf( "%s_%d", symbol->GetLibId().Format().wx_str(), cnt );
while( m_libSymbols.find( newName ) != m_libSymbols.end() )
{
cnt += 1;
newName.Printf( "%s_%d", symbol->GetLibId().Format().wx_str(), cnt );
}
symbol->SetSchSymbolLibraryName( newName );
m_libSymbols[newName] = new LIB_PART( *symbol->GetPartRef() );
}
}
}
}
m_rtree.insert( aItem );
--m_modification_sync;
}
}
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
void SCH_SCREEN::Append( SCH_SCREEN* aScreen )
{
wxCHECK_RET( aScreen, "Invalid screen object." );
// No need to descend the hierarchy. Once the top level screen is copied, all of it's
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
// children are copied as well.
for( auto aItem : aScreen->m_rtree )
Append( aItem );
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
aScreen->Clear( false );
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
}
void SCH_SCREEN::Clear( bool aFree )
{
if( aFree )
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
{
FreeDrawList();
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
clearLibSymbols();
}
else
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
{
m_rtree.clear();
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
}
// Clear the project settings
m_ScreenNumber = m_NumberOfScreens = 1;
m_titles.Clear();
}
void SCH_SCREEN::FreeDrawList()
{
// We don't know which order we will encounter dependent items (e.g. pins or fields), so
// we store the items to be deleted until we've fully cleared the tree before deleting
std::vector<SCH_ITEM*> delete_list;
std::copy_if( m_rtree.begin(), m_rtree.end(), std::back_inserter( delete_list ),
[]( SCH_ITEM* aItem )
{
return ( aItem->Type() != SCH_SHEET_PIN_T && aItem->Type() != SCH_FIELD_T );
} );
m_rtree.clear();
for( auto item : delete_list )
delete item;
}
void SCH_SCREEN::Update( SCH_ITEM* aItem )
{
if( Remove( aItem ) )
Append( aItem );
}
bool SCH_SCREEN::Remove( SCH_ITEM* aItem )
{
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
bool retv = m_rtree.remove( aItem );
// Check if the library symbol for the removed schematic symbol is still required.
if( retv && aItem->Type() == SCH_COMPONENT_T )
{
SCH_COMPONENT* removedSymbol = static_cast<SCH_COMPONENT*>( aItem );
bool removeUnusedLibSymbol = true;
for( SCH_ITEM* item : Items().OfType( SCH_COMPONENT_T ) )
{
SCH_COMPONENT* symbol = static_cast<SCH_COMPONENT*>( item );
if( removedSymbol->GetSchSymbolLibraryName() == symbol->GetSchSymbolLibraryName() )
{
removeUnusedLibSymbol = false;
break;
}
}
if( removeUnusedLibSymbol )
{
auto it = m_libSymbols.find( removedSymbol->GetSchSymbolLibraryName() );
if( it != m_libSymbols.end() )
{
delete it->second;
m_libSymbols.erase( it );
}
}
}
return retv;
}
2008-02-26 19:19:54 +00:00
void SCH_SCREEN::DeleteItem( SCH_ITEM* aItem )
{
wxCHECK_RET( aItem, wxT( "Cannot delete invalid item from screen." ) );
SetModify();
Remove( aItem );
if( aItem->Type() == SCH_SHEET_PIN_T )
{
// This structure is attached to a sheet, get the parent sheet object.
SCH_SHEET_PIN* sheetPin = (SCH_SHEET_PIN*) aItem;
SCH_SHEET* sheet = sheetPin->GetParent();
2018-10-18 12:07:57 +00:00
wxCHECK_RET( sheet, wxT( "Sheet label parent not properly set, bad programmer!" ) );
sheet->RemovePin( sheetPin );
return;
}
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
delete aItem;
}
bool SCH_SCREEN::CheckIfOnDrawList( SCH_ITEM* aItem )
{
return m_rtree.contains( aItem, true );
}
2008-02-26 19:19:54 +00:00
SCH_ITEM* SCH_SCREEN::GetItem( const wxPoint& aPosition, int aAccuracy, KICAD_T aType )
{
EDA_RECT bbox;
bbox.SetOrigin( aPosition );
bbox.Inflate( aAccuracy );
for( auto item : Items().Overlapping( aType, bbox ) )
{
if( item->HitTest( aPosition, aAccuracy ) )
return item;
}
return nullptr;
}
std::set<SCH_ITEM*> SCH_SCREEN::MarkConnections( SCH_LINE* aSegment )
{
std::set<SCH_ITEM*> retval;
std::stack<SCH_LINE*> to_search;
wxCHECK_MSG( ( aSegment ) && ( aSegment->Type() == SCH_LINE_T ), retval,
wxT( "Invalid object pointer." ) );
to_search.push( aSegment );
while( !to_search.empty() )
{
auto test_item = to_search.top();
to_search.pop();
for( auto item : Items().Overlapping( SCH_JUNCTION_T, test_item->GetBoundingBox() ) )
{
if( test_item->IsEndPoint( item->GetPosition() ) )
retval.insert( item );
}
for( auto item : Items().Overlapping( SCH_LINE_T, test_item->GetBoundingBox() ) )
{
// Skip connecting lines on different layers (e.g. buses)
if( test_item->GetLayer() != item->GetLayer() )
continue;
auto line = static_cast<SCH_LINE*>( item );
if( ( test_item->IsEndPoint( line->GetStartPoint() )
&& !GetPin( line->GetStartPoint(), NULL, true ) )
|| ( test_item->IsEndPoint( line->GetEndPoint() )
&& !GetPin( line->GetEndPoint(), nullptr, true ) ) )
{
auto result = retval.insert( line );
if( result.second )
to_search.push( line );
}
}
}
return retval;
}
bool SCH_SCREEN::IsJunctionNeeded( const wxPoint& aPosition, bool aNew )
{
enum { WIRES, BUSES } layers;
2019-05-17 09:29:52 +00:00
bool has_nonparallel[ sizeof( layers ) ] = { false };
int end_count[ sizeof( layers ) ] = { 0 };
int pin_count = 0;
2019-05-17 09:29:52 +00:00
std::vector<SCH_LINE*> lines[ sizeof( layers ) ];
for( auto item : Items().Overlapping( aPosition ) )
{
if( item->GetEditFlags() & STRUCT_DELETED )
continue;
if( aNew && ( item->Type() == SCH_JUNCTION_T ) && ( item->HitTest( aPosition ) ) )
return false;
2019-05-17 09:29:52 +00:00
if( ( item->Type() == SCH_LINE_T ) && ( item->HitTest( aPosition, 0 ) ) )
{
if( item->GetLayer() == LAYER_WIRE )
lines[WIRES].push_back( (SCH_LINE*) item );
else if( item->GetLayer() == LAYER_BUS )
lines[BUSES].push_back( (SCH_LINE*) item );
}
if( ( ( item->Type() == SCH_COMPONENT_T ) || ( item->Type() == SCH_SHEET_T ) )
&& ( item->IsConnected( aPosition ) ) )
pin_count++;
}
for( int i : { WIRES, BUSES } )
{
bool removed_overlapping = false;
bool mid_point = false;
for( auto line = lines[i].begin(); line < lines[i].end(); line++ )
{
if( !(*line)->IsEndPoint( aPosition ) )
mid_point = true;
else
end_count[i]++;
for( auto second_line = lines[i].end() - 1; second_line > line; second_line-- )
{
if( !(*line)->IsParallel( *second_line ) )
has_nonparallel[i] = true;
else if( !removed_overlapping
&& (*line)->IsSameQuadrant( *second_line, aPosition ) )
{
removed_overlapping = true;
}
}
}
/// A line with a midpoint should be counted as two endpoints for this calculation
/// because the junction will split the line into two if there is another item
/// present at the point.
if( mid_point )
end_count[i] += 2;
///Overlapping lines that point in the same direction should not be counted
/// as extra end_points.
if( removed_overlapping )
end_count[i]--;
}
// If there are three or more endpoints
2019-10-19 03:15:29 +00:00
if( pin_count && pin_count + end_count[WIRES] > 2 )
return true;
// If there is at least one segment that ends on a non-parallel line or
// junction of two other lines
2019-10-19 03:15:29 +00:00
if( has_nonparallel[WIRES] && end_count[WIRES] > 2 )
return true;
// Check for bus - bus junction requirements
if( has_nonparallel[BUSES] && end_count[BUSES] > 2 )
return true;
return false;
}
bool SCH_SCREEN::IsTerminalPoint( const wxPoint& aPosition, int aLayer )
{
wxCHECK_MSG( aLayer == LAYER_NOTES || aLayer == LAYER_BUS || aLayer == LAYER_WIRE, false,
wxT( "Invalid layer type passed to SCH_SCREEN::IsTerminalPoint()." ) );
SCH_SHEET_PIN* label;
SCH_TEXT* text;
SCH_CONNECTION conn;
switch( aLayer )
{
case LAYER_BUS:
if( GetBus( aPosition ) )
return true;
label = GetSheetLabel( aPosition );
if( label && conn.IsBusLabel( label->GetText() ) && label->IsConnected( aPosition ) )
return true;
text = GetLabel( aPosition );
if( text && conn.IsBusLabel( text->GetText() ) && text->IsConnected( aPosition )
&& (text->Type() != SCH_LABEL_T) )
return true;
break;
case LAYER_NOTES:
if( GetLine( aPosition ) )
return true;
break;
case LAYER_WIRE:
if( GetItem( aPosition, Mils2iu( 6 ), SCH_BUS_WIRE_ENTRY_T) )
return true;
if( GetItem( aPosition, Mils2iu( 6 ), SCH_BUS_BUS_ENTRY_T) )
return true;
if( GetItem( aPosition, SCH_JUNCTION::GetSymbolSize(), SCH_JUNCTION_T ) )
return true;
if( GetPin( aPosition, NULL, true ) )
return true;
if( GetWire( aPosition ) )
return true;
text = GetLabel( aPosition );
if( text && text->IsConnected( aPosition ) && !conn.IsBusLabel( text->GetText() ) )
return true;
label = GetSheetLabel( aPosition );
if( label && label->IsConnected( aPosition ) && !conn.IsBusLabel( label->GetText() ) )
return true;
break;
default:
break;
}
return false;
}
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
void SCH_SCREEN::UpdateSymbolLinks( REPORTER* aReporter )
{
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
wxString msg;
std::unique_ptr< LIB_PART > libSymbol;
std::vector<SCH_COMPONENT*> symbols;
SYMBOL_LIB_TABLE* libs = Prj().SchSymbolLibTable();
// This will be a nullptr if an s-expression schematic is loaded.
PART_LIBS* legacyLibs = Prj().SchLibs();
for( auto item : Items().OfType( SCH_COMPONENT_T ) )
symbols.push_back( static_cast<SCH_COMPONENT*>( item ) );
// Remove them from the R tree. There bounding box size may change.
for( auto symbol : symbols )
Remove( symbol );
// Clear all existing symbol links.
clearLibSymbols();
for( auto symbol : symbols )
{
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
LIB_PART* tmp = nullptr;
libSymbol.reset();
// If the symbol is already in the internal library, map the symbol to it.
auto it = m_libSymbols.find( symbol->GetSchSymbolLibraryName() );
if( ( it != m_libSymbols.end() ) )
{
if( aReporter )
{
msg.Printf( _( "Setting schematic symbol '%s %s' library identifier "
"to '%s'. " ),
symbol->GetField( REFERENCE )->GetText(),
symbol->GetField( VALUE )->GetText(),
symbol->GetLibId().Format().wx_str() );
aReporter->ReportTail( msg, RPT_SEVERITY_INFO );
}
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
// Internal library symbols are flattens so just make a copy.
symbol->GetPartRef().reset( new LIB_PART( *it->second ) );
continue;
}
if( !symbol->GetLibId().IsValid() )
{
if( aReporter )
{
msg.Printf( _( "Schematic symbol reference '%s' library identifier is not "
"valid. Unable to link library symbol." ),
symbol->GetLibId().Format().wx_str() );
aReporter->ReportTail( msg, RPT_SEVERITY_WARNING );
}
continue;
}
// LIB_TABLE_BASE::LoadSymbol() throws an IO_ERROR if the the library nickname
// is not found in the table so check if the library still exists in the table
// before attempting to load the symbol.
if( !libs->HasLibrary( symbol->GetLibId().GetLibNickname() ) && !legacyLibs )
{
if( aReporter )
{
msg.Printf( _( "Symbol library '%s' not found and no fallback cache "
"library avaiable. Unable to link library symbol." ),
symbol->GetLibId().GetLibNickname().wx_str() );
aReporter->ReportTail( msg, RPT_SEVERITY_WARNING );
}
continue;
}
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
if( libs->HasLibrary( symbol->GetLibId().GetLibNickname() ) )
{
try
{
tmp = libs->LoadSymbol( symbol->GetLibId() );
}
catch( const IO_ERROR& ioe )
{
msg.Printf( _( "I/O error %s resolving library symbol %s" ), ioe.What(),
symbol->GetLibId().Format().wx_str() );
aReporter->ReportTail( msg, RPT_SEVERITY_ERROR );
}
}
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
if( !tmp && legacyLibs )
{
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
// If here, only the cache library should be loaded if the loaded schematic
// is the legacy file format.
wxCHECK2( legacyLibs->GetLibraryCount() == 1, continue );
PART_LIB& legacyCacheLib = legacyLibs->at( 0 );
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
// ...and it better be the cache library.
wxCHECK2( legacyCacheLib.IsCache(), continue );
wxString id = symbol->GetLibId().Format();
id.Replace( ':', '_' );
if( aReporter )
{
msg.Printf( _( "Falling back to cache to set symbol '%s:%s' link '%s'." ),
symbol->GetField( REFERENCE )->GetText(),
symbol->GetField( VALUE )->GetText(),
id );
aReporter->ReportTail( msg, RPT_SEVERITY_WARNING );
}
tmp = legacyCacheLib.FindPart( id );
}
if( tmp )
{
// We want a full symbol not just the top level child symbol.
libSymbol = tmp->Flatten();
libSymbol->SetParent();
m_libSymbols.insert( { symbol->GetSchSymbolLibraryName(),
new LIB_PART( *libSymbol.get() ) } );
if( aReporter )
{
msg.Printf( _( "Setting schematic symbol '%s %s' library identifier to '%s'. " ),
symbol->GetField( REFERENCE )->GetText(),
symbol->GetField( VALUE )->GetText(),
symbol->GetLibId().Format().wx_str() );
aReporter->ReportTail( msg, RPT_SEVERITY_INFO );
}
}
else
{
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
if( aReporter )
{
msg.Printf( _( "No library symbol found for schematic symbol '%s %s'. " ),
symbol->GetField( REFERENCE )->GetText(),
symbol->GetField( VALUE )->GetText() );
aReporter->ReportTail( msg, RPT_SEVERITY_ERROR );
}
}
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
symbol->SetLibSymbol( libSymbol.release() );
}
// Changing the symbol may adjust the bbox of the symbol. This re-inserts the
// item with the new bbox
for( auto symbol : symbols )
Append( symbol );
}
void SCH_SCREEN::UpdateLocalLibSymbolLinks()
{
for( auto item : Items().OfType( SCH_COMPONENT_T ) )
{
SCH_COMPONENT* symbol = static_cast<SCH_COMPONENT*>( item );
auto it = m_libSymbols.find( symbol->GetSchSymbolLibraryName() );
LIB_PART* libSymbol = nullptr;
if( it != m_libSymbols.end() )
libSymbol = new LIB_PART( *it->second );
symbol->SetLibSymbol( libSymbol );
}
}
2020-04-14 12:25:00 +00:00
void SCH_SCREEN::Print( RENDER_SETTINGS* aSettings )
{
// Ensure links are up to date, even if a library was reloaded for some reason:
std::vector< SCH_ITEM* > junctions;
std::vector<SCH_ITEM*> bitmaps;
std::vector<SCH_ITEM*> other;
for( auto item : Items() )
{
2011-07-08 19:55:41 +00:00
if( item->IsMoving() || item->IsResized() )
continue;
if( item->Type() == SCH_JUNCTION_T )
junctions.push_back( item );
else if( item->Type() == SCH_BITMAP_T )
bitmaps.push_back( item );
else
other.push_back( item );
}
/// Sort to ensure plot-order consistency with screen drawing
2020-04-14 12:25:00 +00:00
std::sort( other.begin(), other.end(),
[]( const SCH_ITEM* a, const SCH_ITEM* b )
{
if( a->Type() == b->Type() )
return a->GetLayer() > b->GetLayer();
2020-04-14 12:25:00 +00:00
return a->Type() > b->Type();
} );
for( auto item : bitmaps )
2020-04-14 12:25:00 +00:00
item->Print( aSettings, wxPoint( 0, 0 ) );
for( auto item : other )
2020-04-14 12:25:00 +00:00
item->Print( aSettings, wxPoint( 0, 0 ) );
for( auto item : junctions )
2020-04-14 12:25:00 +00:00
item->Print( aSettings, wxPoint( 0, 0 ) );
}
void SCH_SCREEN::Plot( PLOTTER* aPlotter )
{
// Ensure links are up to date, even if a library was reloaded for some reason:
std::vector< SCH_ITEM* > junctions;
std::vector< SCH_ITEM* > bitmaps;
std::vector< SCH_ITEM* > other;
for( auto item : Items() )
{
if( item->IsMoving() || item->IsResized() )
continue;
if( item->Type() == SCH_JUNCTION_T )
junctions.push_back( item );
else if( item->Type() == SCH_BITMAP_T )
bitmaps.push_back( item );
else
other.push_back( item );
}
/// Sort to ensure plot-order consistency with screen drawing
std::sort( other.begin(), other.end(), []( const SCH_ITEM* a, const SCH_ITEM* b ) {
if( a->Type() == b->Type() )
return a->GetLayer() > b->GetLayer();
return a->Type() > b->Type();
} );
2020-04-14 12:25:00 +00:00
int defaultPenWidth = aPlotter->RenderSettings()->GetDefaultPenWidth();
// Bitmaps are drawn first to ensure they are in the background
// This is particularly important for the wxPostscriptDC (used in *nix printers) as
// the bitmap PS command clears the screen
for( auto item : bitmaps )
{
2020-04-14 12:25:00 +00:00
aPlotter->SetCurrentLineWidth( std::max( item->GetPenWidth(), defaultPenWidth ) );
item->Plot( aPlotter );
}
for( auto item : other )
{
2020-04-14 12:25:00 +00:00
aPlotter->SetCurrentLineWidth( std::max( item->GetPenWidth(), defaultPenWidth ) );
item->Plot( aPlotter );
}
for( auto item : junctions )
{
2020-04-14 12:25:00 +00:00
aPlotter->SetCurrentLineWidth( std::max( item->GetPenWidth(), defaultPenWidth ) );
item->Plot( aPlotter );
}
}
void SCH_SCREEN::ClearUndoORRedoList( UNDO_REDO_CONTAINER& aList, int aItemCount )
{
if( aItemCount == 0 )
return;
for( auto& command : aList.m_CommandsList )
{
command->ClearListAndDeleteItems();
delete command;
}
aList.m_CommandsList.clear();
}
void SCH_SCREEN::ClearDrawingState()
{
for( auto item : Items() )
item->ClearTempFlags();
}
LIB_PIN* SCH_SCREEN::GetPin( const wxPoint& aPosition, SCH_COMPONENT** aComponent,
bool aEndPointOnly )
{
SCH_COMPONENT* component = NULL;
LIB_PIN* pin = NULL;
for( SCH_ITEM* item : Items().Overlapping( SCH_COMPONENT_T, aPosition ) )
{
component = static_cast<SCH_COMPONENT*>( item );
if( aEndPointOnly )
{
pin = NULL;
if( !component->GetPartRef() )
continue;
for( pin = component->GetPartRef()->GetNextPin(); pin;
pin = component->GetPartRef()->GetNextPin( pin ) )
{
// Skip items not used for this part.
if( component->GetUnit() && pin->GetUnit() &&
( pin->GetUnit() != component->GetUnit() ) )
continue;
if( component->GetConvert() && pin->GetConvert() &&
( pin->GetConvert() != component->GetConvert() ) )
continue;
if(component->GetPinPhysicalPosition( pin ) == aPosition )
break;
}
if( pin )
break;
}
else
{
pin = (LIB_PIN*) component->GetDrawItem( aPosition, LIB_PIN_T );
if( pin )
break;
}
}
if( pin && aComponent )
*aComponent = component;
return pin;
}
SCH_SHEET_PIN* SCH_SCREEN::GetSheetLabel( const wxPoint& aPosition )
{
SCH_SHEET_PIN* sheetPin = nullptr;
for( SCH_ITEM* item : Items().OfType( SCH_SHEET_T ) )
{
auto sheet = static_cast<SCH_SHEET*>( item );
sheetPin = sheet->GetPin( aPosition );
if( sheetPin )
break;
}
return sheetPin;
}
size_t SCH_SCREEN::CountConnectedItems( const wxPoint& aPos, bool aTestJunctions )
{
size_t count = 0;
for( SCH_ITEM* item : Items() )
{
if( ( item->Type() != SCH_JUNCTION_T || aTestJunctions ) && item->IsConnected( aPos ) )
count++;
}
return count;
}
2016-02-15 20:22:45 +00:00
void SCH_SCREEN::ClearAnnotation( SCH_SHEET_PATH* aSheetPath )
{
for( SCH_ITEM* item : Items().OfType( SCH_COMPONENT_T ) )
{
SCH_COMPONENT* component = static_cast<SCH_COMPONENT*>( item );
component->ClearAnnotation( aSheetPath );
// Clear the modified component flag set by component->ClearAnnotation
// because we do not use it here and we should not leave this flag set,
// when an editing is finished:
component->ClearFlags();
}
}
void SCH_SCREEN::EnsureAlternateReferencesExist()
{
if( GetClientSheetPaths().size() <= 1 ) // No need for alternate reference
return;
for( SCH_ITEM* item : Items().OfType( SCH_COMPONENT_T ) )
{
auto component = static_cast<SCH_COMPONENT*>( item );
// Add (when not existing) all sheet path entries
for( const auto& sheet : GetClientSheetPaths() )
component->AddSheetPathReferenceEntryIfMissing( sheet.Path() );
}
}
void SCH_SCREEN::GetHierarchicalItems( std::vector<SCH_ITEM*>* aItems )
{
for( SCH_ITEM* item : Items() )
{
if( ( item->Type() == SCH_SHEET_T ) || ( item->Type() == SCH_COMPONENT_T ) )
aItems->push_back( item );
}
}
void SCH_SCREEN::GetSheets( std::vector<SCH_ITEM*>* aItems )
{
for( SCH_ITEM* item : Items().OfType( SCH_SHEET_T ) )
aItems->push_back( item );
std::sort( aItems->begin(), aItems->end(),
[]( EDA_ITEM* a, EDA_ITEM* b ) -> bool
{
long a_order = 0;
long b_order = 0;
for( const SCH_FIELD& field : static_cast<SCH_SHEET*>( a )->GetFields() )
{
if( field.GetName().CmpNoCase( wxT( "Order" ) ) == 0 )
{
field.GetText().ToLong( &a_order );
break;
}
}
for( const SCH_FIELD& field : static_cast<SCH_SHEET*>( b )->GetFields() )
{
if( field.GetName().CmpNoCase( wxT( "Order" ) ) == 0 )
{
field.GetText().ToLong( &b_order );
break;
}
}
if( a_order == b_order )
{
if( a->GetPosition().x == b->GetPosition().x )
return a->GetPosition().y < b->GetPosition().y;
return a->GetPosition().x < b->GetPosition().x;
}
return a_order < b_order;
} );
}
bool SCH_SCREEN::TestDanglingEnds( const SCH_SHEET_PATH* aPath )
{
std::vector< DANGLING_END_ITEM > endPoints;
bool hasStateChanged = false;
for( SCH_ITEM* item : Items() )
item->GetEndPoints( endPoints );
for( SCH_ITEM* item : Items() )
{
if( item->UpdateDanglingState( endPoints, aPath ) )
hasStateChanged = true;
}
return hasStateChanged;
}
SCH_LINE* SCH_SCREEN::GetLine( const wxPoint& aPosition, int aAccuracy, int aLayer,
SCH_LINE_TEST_T aSearchType )
{
// an accuracy of 0 had problems with rounding errors; use at least 1
aAccuracy = std::max( aAccuracy, 1 );
for( SCH_ITEM* item : Items() )
{
if( item->Type() != SCH_LINE_T )
continue;
if( item->GetLayer() != aLayer )
continue;
if( !item->HitTest( aPosition, aAccuracy ) )
continue;
switch( aSearchType )
{
case ENTIRE_LENGTH_T:
return (SCH_LINE*) item;
case EXCLUDE_END_POINTS_T:
if( !( (SCH_LINE*) item )->IsEndPoint( aPosition ) )
return (SCH_LINE*) item;
break;
case END_POINTS_ONLY_T:
if( ( (SCH_LINE*) item )->IsEndPoint( aPosition ) )
return (SCH_LINE*) item;
}
}
return NULL;
}
SCH_TEXT* SCH_SCREEN::GetLabel( const wxPoint& aPosition, int aAccuracy )
{
for( SCH_ITEM* item : Items().Overlapping( aPosition, aAccuracy ) )
{
switch( item->Type() )
{
case SCH_LABEL_T:
case SCH_GLOBAL_LABEL_T:
case SCH_HIER_LABEL_T:
if( item->HitTest( aPosition, aAccuracy ) )
return (SCH_TEXT*) item;
break;
default:
;
}
}
return NULL;
}
2016-02-15 20:14:07 +00:00
bool SCH_SCREEN::SetComponentFootprint( SCH_SHEET_PATH* aSheetPath, const wxString& aReference,
const wxString& aFootPrint, bool aSetVisible )
{
SCH_COMPONENT* component;
bool found = false;
for( SCH_ITEM* item : Items().OfType( SCH_COMPONENT_T ) )
{
component = static_cast<SCH_COMPONENT*>( item );
2016-02-15 20:17:51 +00:00
if( aReference.CmpNoCase( component->GetRef( aSheetPath ) ) == 0 )
{
// Found: Init Footprint Field
/* Give a reasonable value to the field position and
* orientation, if the text is empty at position 0, because
* it is probably not yet initialized
*/
SCH_FIELD * fpfield = component->GetField( FOOTPRINT );
if( fpfield->GetText().IsEmpty()
&& ( fpfield->GetTextPos() == component->GetPosition() ) )
{
fpfield->SetTextAngle( component->GetField( VALUE )->GetTextAngle() );
fpfield->SetTextPos( component->GetField( VALUE )->GetTextPos() );
fpfield->SetTextSize( component->GetField( VALUE )->GetTextSize() );
if( fpfield->GetTextAngle() == 0.0 )
fpfield->Offset( wxPoint( 0, Mils2iu( 100 ) ) );
else
fpfield->Offset( wxPoint( Mils2iu( 100 ), 0 ) );
}
fpfield->SetText( aFootPrint );
fpfield->SetVisible( aSetVisible );
found = true;
}
}
return found;
}
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
void SCH_SCREEN::AddLibSymbol( LIB_PART* aLibSymbol )
{
wxCHECK( aLibSymbol, /* void */ );
wxString libSymbolName = aLibSymbol->GetLibId().Format().wx_str();
auto it = m_libSymbols.find( libSymbolName );
if( it != m_libSymbols.end() )
{
delete it->second;
m_libSymbols.erase( it );
}
m_libSymbols[libSymbolName] = aLibSymbol;
}
void SCH_SCREEN::AddBusAlias( std::shared_ptr<BUS_ALIAS> aAlias )
{
m_aliases.insert( aAlias );
}
bool SCH_SCREEN::IsBusAlias( const wxString& aLabel )
{
SCH_SHEET_LIST aSheets( g_RootSheet );
for( unsigned i = 0; i < aSheets.size(); i++ )
{
for( const auto& alias : aSheets[i].LastScreen()->GetBusAliases() )
{
if( alias->GetName() == aLabel )
{
return true;
}
}
}
return false;
}
std::shared_ptr<BUS_ALIAS> SCH_SCREEN::GetBusAlias( const wxString& aLabel )
{
SCH_SHEET_LIST aSheets( g_RootSheet );
for( unsigned i = 0; i < aSheets.size(); i++ )
{
for( auto alias : aSheets[i].LastScreen()->GetBusAliases() )
{
if( alias->GetName() == aLabel )
{
return alias;
}
}
}
return NULL;
}
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
#if defined(DEBUG)
void SCH_SCREEN::Show( int nestLevel, std::ostream& os ) const
{
// for now, make it look like XML, expand on this later.
NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str() << ">\n";
for( const SCH_ITEM* item : Items() )
item->Show( nestLevel + 1, os );
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
NestedSpace( nestLevel, os ) << "</" << GetClass().Lower().mb_str() << ">\n";
}
#endif
SCH_SCREENS::SCH_SCREENS( SCH_SHEET* aSheet )
2008-04-12 18:39:20 +00:00
{
m_index = 0;
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
buildScreenList( ( !aSheet ) ? g_RootSheet : aSheet );
2008-04-12 18:39:20 +00:00
}
SCH_SCREENS::~SCH_SCREENS()
{
}
SCH_SCREEN* SCH_SCREENS::GetFirst()
{
m_index = 0;
if( m_screens.size() > 0 )
return m_screens[0];
2008-02-26 19:19:54 +00:00
return NULL;
}
2008-02-26 19:19:54 +00:00
SCH_SCREEN* SCH_SCREENS::GetNext()
{
if( m_index < m_screens.size() )
m_index++;
return GetScreen( m_index );
}
SCH_SCREEN* SCH_SCREENS::GetScreen( unsigned int aIndex ) const
{
if( aIndex < m_screens.size() )
return m_screens[ aIndex ];
2008-02-26 19:19:54 +00:00
return NULL;
}
2008-02-26 19:19:54 +00:00
SCH_SHEET* SCH_SCREENS::GetSheet( unsigned int aIndex ) const
{
if( aIndex < m_sheets.size() )
return m_sheets[ aIndex ];
return NULL;
}
void SCH_SCREENS::addScreenToList( SCH_SCREEN* aScreen, SCH_SHEET* aSheet )
{
if( aScreen == NULL )
2008-02-26 19:19:54 +00:00
return;
for( const SCH_SCREEN* screen : m_screens )
2008-02-26 19:19:54 +00:00
{
if( screen == aScreen )
2008-02-26 19:19:54 +00:00
return;
}
m_screens.push_back( aScreen );
m_sheets.push_back( aSheet );
}
2008-02-26 19:19:54 +00:00
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
void SCH_SCREENS::buildScreenList( SCH_SHEET* aSheet )
{
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
if( aSheet && aSheet->Type() == SCH_SHEET_T )
2008-02-26 19:19:54 +00:00
{
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
SCH_SCREEN* screen = aSheet->GetScreen();
addScreenToList( screen, aSheet );
for( SCH_ITEM* item : screen->Items().OfType( SCH_SHEET_T ) )
buildScreenList( static_cast<SCH_SHEET*>( item ) );
2008-02-26 19:19:54 +00:00
}
}
2016-02-15 20:22:45 +00:00
void SCH_SCREENS::ClearAnnotation()
{
for( SCH_SCREEN* screen : m_screens )
screen->ClearAnnotation( NULL );
2016-02-15 20:22:45 +00:00
}
void SCH_SCREENS::ClearAnnotationOfNewSheetPaths( SCH_SHEET_LIST& aInitialSheetPathList )
{
// Clear the annotation for the components inside new sheetpaths
// not already in aInitialSheetList
SCH_SCREENS screensList( g_RootSheet ); // The list of screens, shared by sheet paths
screensList.BuildClientSheetPathList(); // build the shared by sheet paths, by screen
// Search for new sheet paths, not existing in aInitialSheetPathList
// and existing in sheetpathList
SCH_SHEET_LIST sheetpathList( g_RootSheet );
for( SCH_SHEET_PATH& sheetpath: sheetpathList )
{
bool path_exists = false;
for( const SCH_SHEET_PATH& existing_sheetpath: aInitialSheetPathList )
{
if( existing_sheetpath.Path() == sheetpath.Path() )
{
path_exists = true;
break;
}
}
if( !path_exists )
{
// A new sheet path is found: clear the annotation corresponding to this new path:
SCH_SCREEN* curr_screen = sheetpath.LastScreen();
// Clear annotation and create the AR for this path, if not exists,
// when the screen is shared by sheet paths.
// Otherwise ClearAnnotation do nothing, because the F1 field is used as
// reference default value and takes the latest displayed value
curr_screen->EnsureAlternateReferencesExist();
curr_screen->ClearAnnotation( &sheetpath );
}
}
}
int SCH_SCREENS::ReplaceDuplicateTimeStamps()
{
std::vector<SCH_ITEM*> items;
int count = 0;
auto timestamp_cmp = []( const EDA_ITEM* a, const EDA_ITEM* b ) -> bool
2020-02-20 12:11:04 +00:00
{
return a->m_Uuid < b->m_Uuid;
};
std::set<EDA_ITEM*, decltype( timestamp_cmp )> unique_stamps( timestamp_cmp );
2020-02-20 12:11:04 +00:00
for( SCH_SCREEN* screen : m_screens )
screen->GetHierarchicalItems( &items );
if( items.size() < 2 )
return 0;
2020-02-20 12:11:04 +00:00
for( EDA_ITEM* item : items )
{
2020-02-20 12:11:04 +00:00
if( !unique_stamps.insert( item ).second )
{
2020-02-20 12:11:04 +00:00
// Reset to fully random UUID. This may lose reference, but better to be
// deterministic about it rather than to have duplicate UUIDs with random
// side-effects.
2020-02-21 22:20:42 +00:00
const_cast<KIID&>( item->m_Uuid ) = KIID();
2020-02-20 12:11:04 +00:00
count++;
}
}
return count;
}
void SCH_SCREENS::DeleteMarker( SCH_MARKER* aMarker )
{
for( SCH_SCREEN* screen = GetFirst(); screen; screen = GetNext() )
{
for( SCH_ITEM* item : screen->Items().OfType( SCH_MARKER_T ) )
{
if( item == aMarker )
{
screen->DeleteItem( item );
return;
}
}
}
}
void SCH_SCREENS::DeleteMarkers( enum MARKER_BASE::TYPEMARKER aMarkerType, int aErrorCode )
{
for( SCH_SCREEN* screen = GetFirst(); screen; screen = GetNext() )
{
std::vector<SCH_ITEM*> markers;
for( SCH_ITEM* item : screen->Items().OfType( SCH_MARKER_T ) )
{
SCH_MARKER* marker = static_cast<SCH_MARKER*>( item );
RC_ITEM* rcItem = marker->GetRCItem();
if( marker->GetMarkerType() == aMarkerType &&
( aErrorCode == ERCE_UNSPECIFIED || rcItem->GetErrorCode() == aErrorCode ) )
{
markers.push_back( item );
}
}
for( SCH_ITEM* marker : markers )
screen->DeleteItem( marker );
}
}
void SCH_SCREENS::DeleteAllMarkers( enum MARKER_BASE::TYPEMARKER aMarkerType )
{
DeleteMarkers( aMarkerType, ERCE_UNSPECIFIED );
}
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
void SCH_SCREENS::UpdateSymbolLinks( REPORTER* aReporter )
{
for( SCH_SCREEN* screen = GetFirst(); screen; screen = GetNext() )
Make the new schematic and symbol library file formats the default. This is a very large and potentially disruptive change so this will be an unusually long and detailed commit message. The new file formats are now the default in both the schematic and symbol library editors. Existing symbol libraries will be saved in their current format until new features are added to library symbols. Once this happens, both the legacy schematic and symbol file formats will be no longer be savable and existing libraries will have to be converted. Saving to the legacy file formats is still available for round robin testing and should not be used for normal editing. When loading the legacy schematic file, it is imperative that the schematic library symbols are rescued and/or remapped to valid library identifiers. Otherwise, there will be no way to link to the original library symbol and the user will be required manually set the library identifier. The cached symbol will be saved in the schematic file so the last library symbol in the cache will still be used but there will be no way to update it from the original library. The next save after loading a legacy schematic file will be converted to the s-expression file format. Schematics with hierarchical sheets will automatically have all sheet file name extensions changed to .kicad_sym and saved to the new format as well. Appending schematics requires that the schematic to append has already been converted to the new file format. This is required to ensure that library symbols are guaranteed to be valid for the appended schematic. The schematic symbol library symbol link resolution has been moved out of the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the symbol. This was done to ensure that there is a single place where the library symbol links get resolved rather than the dozen or so different code paths that previously existed. It also removes the necessity of the SCH_COMPONENT object of requiring any knowledge of the symbol library table and/or the cache library. When opening an s-expression schematic, the legacy cache library is not loaded so any library symbols not rescued cannot be loaded. Broken library symbol links will have to be manually resolved by adding the cache library to the symbol library table and changing the links in the schematic symbol. Now that the library symbols are embedded in the schematic file, the SCH_SCREEN object maintains the list of library symbols for the schematic automatically. No external manipulation of this library cache should ever occur. ADDED: S-expression schematic and symbol library file formats.
2020-04-16 16:43:50 +00:00
screen->UpdateSymbolLinks( aReporter );
SCH_SHEET_LIST sheets( g_RootSheet );
// All of the library symbols have been replaced with copies so the connection graph
// pointer are stale.
if( g_ConnectionGraph )
g_ConnectionGraph->Recalculate( sheets, true );
}
void SCH_SCREENS::TestDanglingEnds()
{
std::vector<SCH_SCREEN*> screens;
for( SCH_SCREEN* screen = GetFirst(); screen; screen = GetNext() )
screens.push_back( screen );
size_t parallelThreadCount = std::min<size_t>( std::thread::hardware_concurrency(),
screens.size() );
std::atomic<size_t> nextScreen( 0 );
std::vector<std::future<size_t>> returns( parallelThreadCount );
auto update_lambda = [&screens, &nextScreen]() -> size_t
{
for( auto i = nextScreen++; i < screens.size(); i = nextScreen++ )
screens[i]->TestDanglingEnds();
return 1;
};
if( parallelThreadCount == 1 )
update_lambda();
else
{
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
returns[ii] = std::async( std::launch::async, update_lambda );
// Finalize the threads
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
returns[ii].wait();
}
}
bool SCH_SCREENS::HasNoFullyDefinedLibIds()
{
SCH_SCREEN* screen;
unsigned cnt = 0;
for( screen = GetFirst(); screen; screen = GetNext() )
{
for( auto item : screen->Items().OfType( SCH_COMPONENT_T ) )
{
cnt++;
auto symbol = static_cast<SCH_COMPONENT*>( item );
if( !symbol->GetLibId().GetLibNickname().empty() )
return false;
}
}
return cnt != 0;
}
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
size_t SCH_SCREENS::GetLibNicknames( wxArrayString& aLibNicknames )
{
for( SCH_SCREEN* screen = GetFirst(); screen; screen = GetNext() )
{
for( auto item : screen->Items().OfType( SCH_COMPONENT_T ) )
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
{
auto symbol = static_cast<SCH_COMPONENT*>( item );
auto& nickname = symbol->GetLibId().GetLibNickname();
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
if( !nickname.empty() && ( aLibNicknames.Index( nickname ) == wxNOT_FOUND ) )
aLibNicknames.Add( nickname );
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
}
}
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
return aLibNicknames.GetCount();
}
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
int SCH_SCREENS::ChangeSymbolLibNickname( const wxString& aFrom, const wxString& aTo )
{
SCH_SCREEN* screen;
int cnt = 0;
for( screen = GetFirst(); screen; screen = GetNext() )
{
for( auto item : screen->Items().OfType( SCH_COMPONENT_T ) )
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
{
auto symbol = static_cast<SCH_COMPONENT*>( item );
Use legacy schematic plugin for loading schematics in all code paths. Use the legacy plugin schematic loader in the sheet edit and append schematic code paths. Check for fully qualified LIB_ID objects (must have library nickname) when loading existing schematics when edit sheets. Rewrite append schematic feature to handle import issues rather than change the name and file name of all of the sheets in the imported schematic. This includes the following: - Load the schematic into a temporary SCH_SHEET object. - Make sure the imported schematic does not cause any hierarchy recursion issues. - Verify the imported schematic uses fully qualified #LIB_ID objects (symbol library table). - Check to see if any symbol libraries need to be added to the current project's symbol library table. This includes: - Check if the symbol library already exists in the project or global symbol library table. - Convert symbol library URLS that use the ${KIPRJMOD} environment variable to absolute paths. ${KIPRJMOD} will not be the same for this project. - Check for duplicate symbol library nicknames and change the new symbol library nickname to prevent library name clashes. - Update all schematic symbol LIB_ID object library nicknames when the library nickname was changed to prevent clashes. - Check for duplicate sheet names which is illegal and automatically rename any duplicate sheets in the imported schematic. - Clear all of the annotation in the imported schematic to prevent clashes. - Append the objects from the temporary sheet to the current page. - Replace any duplicate time stamps. - Refresh the symbol library links. Add support code to SCH_SCREEN object to assist with schematic import. Doxygen comment cleaning. Fixes lp:1731760 https://bugs.launchpad.net/kicad/+bug/1731760
2017-11-17 17:00:04 +00:00
if( symbol->GetLibId().GetLibNickname() != aFrom )
continue;
LIB_ID id = symbol->GetLibId();
id.SetLibNickname( aTo );
symbol->SetLibId( id );
cnt++;
}
}
return cnt;
}
bool SCH_SCREENS::HasSchematic( const wxString& aSchematicFileName )
{
for( const SCH_SCREEN* screen = GetFirst(); screen; screen = GetNext() )
{
if( screen->GetFileName() == aSchematicFileName )
return true;
}
return false;
}
bool SCH_SCREENS::CanCauseCaseSensitivityIssue( const wxString& aSchematicFileName ) const
{
wxString lhsLower;
wxString rhsLower;
wxFileName lhs;
wxFileName rhs = aSchematicFileName;
wxCHECK( rhs.IsAbsolute(), false );
for( const SCH_SCREEN* screen : m_screens )
{
lhs = screen->GetFileName();
if( lhs.GetPath() != rhs.GetPath() )
continue;
lhsLower = lhs.GetFullName().Lower();
rhsLower = rhs.GetFullName().Lower();
if( lhsLower == rhsLower && lhs.GetFullName() != rhs.GetFullName() )
return true;
}
return false;
}
void SCH_SCREENS::BuildClientSheetPathList()
{
SCH_SHEET_LIST sheetList( g_RootSheet );
for( SCH_SCREEN* curr_screen = GetFirst(); curr_screen; curr_screen = GetNext() )
curr_screen->GetClientSheetPaths().clear();
for( SCH_SHEET_PATH& sheetpath: sheetList )
{
SCH_SCREEN* used_screen = sheetpath.LastScreen();
// SEarch for the used_screen in list and add this unique sheet path:
for( SCH_SCREEN* curr_screen = GetFirst(); curr_screen; curr_screen = GetNext() )
{
if( used_screen == curr_screen )
{
curr_screen->GetClientSheetPaths().push_back( sheetpath );
break;
}
}
}
}