kicad/3d-viewer/3d_rendering/3d_render_raytracing/shapes3D/bbox_3d.cpp

387 lines
10 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2017 Mario Luzeiro <mrluzeiro@ua.pt>
2020-12-11 13:51:42 +00:00
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file bbox_3d.cpp
* @brief 3D bounding box implementation.
*/
#include "3d_fastmath.h"
#include "bbox_3d.h"
#include "../ray.h"
#include <wx/log.h>
#include <wx/debug.h> // For the wxASSERT
BBOX_3D::BBOX_3D()
{
Reset();
}
BBOX_3D::BBOX_3D( const SFVEC3F& aPbInit )
{
m_min = aPbInit;
m_max = aPbInit;
}
BBOX_3D::BBOX_3D( const SFVEC3F& aPbMin, const SFVEC3F& aPbMax )
{
Set( aPbMin, aPbMax );
}
BBOX_3D::~BBOX_3D()
{
}
void BBOX_3D::Set( const SFVEC3F& aPoint )
{
m_min = aPoint;
m_max = aPoint;
}
void BBOX_3D::Set( const SFVEC3F& aPbMin, const SFVEC3F& aPbMax )
{
m_min.x = fminf( aPbMin.x, aPbMax.x );
m_min.y = fminf( aPbMin.y, aPbMax.y );
m_min.z = fminf( aPbMin.z, aPbMax.z );
m_max.x = fmaxf( aPbMin.x, aPbMax.x );
m_max.y = fmaxf( aPbMin.y, aPbMax.y );
m_max.z = fmaxf( aPbMin.z, aPbMax.z );
}
void BBOX_3D::Set( const BBOX_3D& aBBox )
{
wxASSERT( aBBox.IsInitialized() );
Set( aBBox.Min(), aBBox.Max() );
}
bool BBOX_3D::IsInitialized() const
{
return !( ( FLT_MAX == m_min.x ) || ( FLT_MAX == m_min.y ) || ( FLT_MAX == m_min.z )
|| ( -FLT_MAX == m_max.x ) || ( -FLT_MAX == m_max.y ) || ( -FLT_MAX == m_max.z ) );
}
void BBOX_3D::Reset()
{
m_min = SFVEC3F( FLT_MAX, FLT_MAX, FLT_MAX );
m_max = SFVEC3F( -FLT_MAX, -FLT_MAX, -FLT_MAX );
}
void BBOX_3D::Union( const SFVEC3F& aPoint )
{
2020-12-11 13:51:42 +00:00
// get the minimum value between the added point and the existent bounding box
m_min.x = fminf( m_min.x, aPoint.x );
m_min.y = fminf( m_min.y, aPoint.y );
m_min.z = fminf( m_min.z, aPoint.z );
2020-12-11 13:51:42 +00:00
// get the maximum value between the added point and the existent bounding box
m_max.x = fmaxf( m_max.x, aPoint.x );
m_max.y = fmaxf( m_max.y, aPoint.y );
m_max.z = fmaxf( m_max.z, aPoint.z );
}
void BBOX_3D::Union( const BBOX_3D& aBBox )
{
wxASSERT( aBBox.IsInitialized() );
2020-12-11 13:51:42 +00:00
// get the minimum value between the added bounding box and the existent bounding box
m_min.x = fmin( m_min.x, aBBox.m_min.x );
m_min.y = fmin( m_min.y, aBBox.m_min.y );
m_min.z = fmin( m_min.z, aBBox.m_min.z );
2020-12-11 13:51:42 +00:00
// get the maximum value between the added bounding box and the existent bounding box
m_max.x = fmax( m_max.x, aBBox.m_max.x );
m_max.y = fmax( m_max.y, aBBox.m_max.y );
m_max.z = fmax( m_max.z, aBBox.m_max.z );
}
SFVEC3F BBOX_3D::GetCenter() const
{
return ( m_max + m_min ) * 0.5f;
}
float BBOX_3D::GetCenter( unsigned int aAxis ) const
{
wxASSERT( aAxis < 3 );
return ( m_max[aAxis] + m_min[aAxis] ) * 0.5f;
}
const SFVEC3F BBOX_3D::GetExtent() const
{
return m_max - m_min;
}
unsigned int BBOX_3D::MaxDimension() const
{
unsigned int result = 0;
SFVEC3F extent = GetExtent();
if( extent.y > extent.x )
result = 1;
if( extent.z > extent.y )
result = 2;
return result;
}
float BBOX_3D::GetMaxDimension() const
{
unsigned int max_dimensions_idx = 0;
SFVEC3F extent = GetExtent();
if( extent.y > extent.x )
max_dimensions_idx = 1;
if( extent.z > extent.y )
max_dimensions_idx = 2;
return extent[max_dimensions_idx];
}
float BBOX_3D::SurfaceArea() const
{
SFVEC3F extent = GetExtent();
return 2.0f * ( extent.x * extent.z + extent.x * extent.y + extent.y * extent.z );
}
void BBOX_3D::Scale( float aScale )
{
wxASSERT( IsInitialized() );
SFVEC3F scaleV = SFVEC3F( aScale, aScale, aScale );
SFVEC3F centerV = GetCenter();
m_min = ( m_min - centerV ) * scaleV + centerV;
m_max = ( m_max - centerV ) * scaleV + centerV;
}
void BBOX_3D::ScaleNextUp()
{
m_min.x = NextFloatDown( m_min.x );
m_min.y = NextFloatDown( m_min.y );
m_min.z = NextFloatDown( m_min.z );
m_max.x = NextFloatUp( m_max.x );
m_max.y = NextFloatUp( m_max.y );
m_max.z = NextFloatUp( m_max.z );
}
void BBOX_3D::ScaleNextDown()
{
m_min.x = NextFloatUp( m_min.x );
m_min.y = NextFloatUp( m_min.y );
m_min.z = NextFloatUp( m_min.z );
m_max.x = NextFloatDown( m_max.x );
m_max.y = NextFloatDown( m_max.y );
m_max.z = NextFloatDown( m_max.z );
}
bool BBOX_3D::Intersects( const BBOX_3D& aBBox ) const
{
wxASSERT( IsInitialized() );
wxASSERT( aBBox.IsInitialized() );
bool x = ( m_max.x >= aBBox.m_min.x ) && ( m_min.x <= aBBox.m_max.x );
bool y = ( m_max.y >= aBBox.m_min.y ) && ( m_min.y <= aBBox.m_max.y );
bool z = ( m_max.z >= aBBox.m_min.z ) && ( m_min.z <= aBBox.m_max.z );
return ( x && y && z );
}
bool BBOX_3D::Inside( const SFVEC3F& aPoint ) const
{
wxASSERT( IsInitialized() );
return ( aPoint.x >= m_min.x ) && ( aPoint.x <= m_max.x ) &&
( aPoint.y >= m_min.y ) && ( aPoint.y <= m_max.y ) &&
( aPoint.z >= m_min.z ) && ( aPoint.z <= m_max.z );
}
float BBOX_3D::Volume() const
{
wxASSERT( IsInitialized() );
SFVEC3F extent = GetExtent();
return extent.x * extent.y * extent.z;
}
SFVEC3F BBOX_3D::Offset( const SFVEC3F& p ) const
{
return (p - m_min) / (m_max - m_min);
}
/// @todo Why are we keeping both implementations of Intersect()?
// Intersection code based on the book:
// "Physical Based Ray Tracing" (by Matt Pharr and Greg Humphrey)
// https://github.com/mmp/pbrt-v2/blob/master/src/core/geometry.cpp#L68
#if 0
bool BBOX_3D::Intersect( const RAY& aRay, float* aOutHitt0, float* aOutHitt1 ) const
{
float t0 = 0.0f;
float t1 = FLT_MAX;
for( unsigned int i = 0; i < 3; ++i )
{
// Update interval for _i_th bounding box slab
float tNear = ( m_min[i] - aRay.m_Origin[i] ) * aRay.m_InvDir[i];
float tFar = ( m_max[i] - aRay.m_Origin[i] ) * aRay.m_InvDir[i];
// Update parametric interval from slab intersection
if( tNear > tFar )
{
// Swap
float ftemp = tNear;
tNear = tFar;
tFar = ftemp;
}
t0 = tNear > t0 ? tNear : t0;
t1 = tFar < t1 ? tFar : t1;
if( t0 > t1 )
return false;
}
if( aOutHitt0 )
*aOutHitt0 = t0;
if( aOutHitt1 )
*aOutHitt1 = t1;
return true;
}
#else
// https://github.com/mmp/pbrt-v2/blob/master/src/accelerators/bvh.cpp#L126
bool BBOX_3D::Intersect( const RAY& aRay, float* aOutHitt0, float* aOutHitt1 ) const
{
wxASSERT( aOutHitt0 );
wxASSERT( aOutHitt1 );
const SFVEC3F bounds[2] = {m_min, m_max};
// Check for ray intersection against x and y slabs
float tmin = ( bounds[aRay.m_dirIsNeg[0]].x - aRay.m_Origin.x ) * aRay.m_InvDir.x;
float tmax = ( bounds[1 - aRay.m_dirIsNeg[0]].x - aRay.m_Origin.x ) * aRay.m_InvDir.x;
const float tymin = ( bounds[aRay.m_dirIsNeg[1]].y - aRay.m_Origin.y ) * aRay.m_InvDir.y;
const float tymax = ( bounds[1 - aRay.m_dirIsNeg[1]].y - aRay.m_Origin.y ) * aRay.m_InvDir.y;
if( ( tmin > tymax ) || ( tymin > tmax ) )
return false;
tmin = ( tymin > tmin ) ? tymin : tmin;
tmax = ( tymax < tmax ) ? tymax : tmax;
// Check for ray intersection against z slab
const float tzmin = ( bounds[aRay.m_dirIsNeg[2]].z - aRay.m_Origin.z ) * aRay.m_InvDir.z;
const float tzmax = ( bounds[1 - aRay.m_dirIsNeg[2]].z - aRay.m_Origin.z ) * aRay.m_InvDir.z;
if( ( tmin > tzmax ) || ( tzmin > tmax ) )
return false;
tmin = (tzmin > tmin)? tzmin : tmin;
tmin = ( tmin < 0.0f)? 0.0f : tmin;
tmax = (tzmax < tmax)? tzmax : tmax;
*aOutHitt0 = tmin;
*aOutHitt1 = tmax;
return true;
}
#endif
void BBOX_3D::ApplyTransformation( glm::mat4 aTransformMatrix )
{
wxASSERT( IsInitialized() );
const SFVEC3F v1 = SFVEC3F( aTransformMatrix * glm::vec4( m_min.x, m_min.y, m_min.z, 1.0f ) );
const SFVEC3F v2 = SFVEC3F( aTransformMatrix * glm::vec4( m_max.x, m_max.y, m_max.z, 1.0f ) );
Reset();
Union( v1 );
Union( v2 );
}
void BBOX_3D::ApplyTransformationAA( glm::mat4 aTransformMatrix )
{
wxASSERT( IsInitialized() );
// apply the transformation matrix for each of vertices of the bounding box
// and make a union with all vertices
BBOX_3D tmpBBox = BBOX_3D(
SFVEC3F( aTransformMatrix * glm::vec4( m_min.x, m_min.y, m_min.z, 1.0f ) ) );
tmpBBox.Union( SFVEC3F( aTransformMatrix * glm::vec4( m_max.x, m_min.y, m_min.z, 1.0f ) ) );
tmpBBox.Union( SFVEC3F( aTransformMatrix * glm::vec4( m_min.x, m_max.y, m_min.z, 1.0f ) ) );
tmpBBox.Union( SFVEC3F( aTransformMatrix * glm::vec4( m_min.x, m_min.y, m_max.z, 1.0f ) ) );
tmpBBox.Union( SFVEC3F( aTransformMatrix * glm::vec4( m_min.x, m_max.y, m_max.z, 1.0f ) ) );
tmpBBox.Union( SFVEC3F( aTransformMatrix * glm::vec4( m_max.x, m_max.y, m_min.z, 1.0f ) ) );
tmpBBox.Union( SFVEC3F( aTransformMatrix * glm::vec4( m_max.x, m_min.y, m_max.z, 1.0f ) ) );
tmpBBox.Union( SFVEC3F( aTransformMatrix * glm::vec4( m_max.x, m_max.y, m_max.z, 1.0f ) ) );
m_min = tmpBBox.m_min;
m_max = tmpBBox.m_max;
}
void BBOX_3D::debug() const
{
wxLogDebug( "min(%f, %f, %f) - max(%f, %f, %f)\n", m_min.x, m_min.y, m_min.z,
2020-12-11 13:51:42 +00:00
m_max.x, m_max.y, m_max.z );
}